

Replacement Pages
for

Model 4 Technical Reference Manual

Attached are replacement pages for the Model 4 Technical Reference Manual
to update the Software Section to TRSDOS 6.2.

If your Model 4 Technical Reference Manual has already been updated, it will
have the following note on the copyright page:

Software Section updated to TRSDOS 6.2

If your manual has this note, you do not need the replacement pages. If it
does not, insert the pages into your manual.

If you have not purchased a Model 4 Technical Reference Manual, but may in
the future, keep these pages.

You may purchase the Model 4 Technical Reference Manual through your Ra
dio Shack dealer.

Thank You

lladNt lllaeK
A DIVISION OF TANDY CORPORATION

FORT WORTH, TEXAS 78102 .

TSA 8759526
TAP 8749529

8/ Using the Supervisor Calls 227
Calling Procedure 227
Program Entry and Return Conditions 227
Supervisor Calls 228
Numerical List of SVCs 331
Alphabet ical List of SVCs 334
Sample Programs 336

9/ Technical Information on TRSDOS Commands and Utilities 361

Appendix A/
Appendix B/
Appendix C/
Appendix D/

Appendix E/
Appendi x F/

TRSDOS Error Messages 365
Memory Map 371
Character Codes 373
Keyboard Code Map 383

Programmable SVCs 385
Using SYS 13/SYS 387

Index 389

vii

Utility Programs

In TRSDOS Version 6.2, this overlay contains the message "No ECI is present
at SYS13" if you have not implemented an Extended Command Interpreter
(ECI) or an Immediate Execution Program (IEP). You may purge this overlay if
you do not intend to use an ECI or an IEP. See Appendix F, Using SYS13, for
more information.

BACKUP - Used to duplicate data from one disk to another.

COMM - A communications package for use with the RS-232C
hardware.

CONV - Used to copy files from Model 111 TRSDOS to TRSDOS Version
6.

DOS/HLP - (Version 6.2 only) The data file used with the HELP utility.

FORMAT - Used to put track, sector, and directory information on a disk.

HELP/CMD - (Version 6.2 only) Used to provide on-l ine information about
the TRSDOS commands.

LOG - Used to log in a double-sided diskette in Drive 0. Also updates
the Drive Code Table information as with the DEVICE library
command.

PATCH - Used to make changes to existing files.

REPAIR - Used to correct certain information on non-TRSDOS format-
ted diskettes.

TAPE100 - A disk/tape, tape/disk utility for cassette tape operations with
the TRS-80 Model 100.

Device Driver Programs

Filter Programs

COM/OVA - The RS-232C communications driver.

FLOPPY/OCT - Configures floppy drives in the system. Not needed with a
floppy-only system.

JU DVR - The Joblog driver program.

MEMDISK/DCT - Used to establish a pseudo floppy drive in memory.

CLICK/FLT - Produces a short tone as each key is pressed.

FORMS/FLT - Used to select printer parameters and perform character
translation.

KSM/FLT - The Keystroke Multiply feature, which allows the assigning
of user-determined phrases to alphabetic keys.

Creating a Minimum Configuration Disk
All files except certain /SYS files may be purged from your Drive 0 disk. Addi
tionally, if you place the needed /SYS files in high memory with the SYSTEM
(SYSRES) command, it will be possible to run with a minimum configuration
disk in Drive 0 after booting the system. Keep the following points in mind when
purging system files:

• For operation, SYS files 1, 2, 3, 4, 10, and 12 should remain on the Drive
0 disk or be resident in memory.

189

• SYS2 must be on the system disk if a configuration file is to be loaded.

• SYS11 must be present only if any JCL files will be used.

• All three libraries (SYS files 6, 7, and 8) may be purged if no library com
mand will be used.

• SYS5 and SYS9 may be purged if the system DEBUG package is not
needed.

• SYS0 may be removed from any disk not used for booting.

• SYS11 (the JCL processor) and SYS6 (containing the DO library com
mand) must both be on the disk if the DO command is to be used. Also,
if you remove SYS6, you may as well remove SYS11.

• SYS13 may be removed if you have not implemented an ECI , an IEP file ,
or if you do not intend to use them.

The presence of any utility, driver, or filter program is dependent upon your in
dividual needs. You can save most of the TRSDOS features in a configuration
file using the SYSTEM (SYSGEN) command, so the driver and filter programs
will not be needed in run time applications. If you intend to use the HELP utility,
your disk must contain the DOS/HLP file .

The owner (update) passwords for TRSDOS files are as follows :

File Type Extension Owner Password

System files (/SYS) LSIDOS
Filter files (/FLT) FILTER
Driver files (/DVR) DRIVER
Utility files (/CMD) UTILITY
BASIC BASIC
BASIC overlays (/OV$) BASIC
CON FIG/SYS CCC
Drive Code Table (/DCT) UTILITY

Initializer

190

5/Drive Access

Drive Code Table (DCT)

TRSDOS uses a Drive Code Table (DCT) to interface the operating system with
specific disk driver routines. Note especially the fields that specify the allocation
scheme for a given drive. This data is essential in the allocation and accessi
bility of file records.

The DCT contains eight 10-byte positions - one for each logical drive des
ignated 0-7. TRSDOS supports a standard configurat ion of two-floppy
drives. You may have up to four floppy drives. This is the default initializa
tion when TRSDOS is loaded.

Here is the Drive Code Table layout:

DCT+0

This is the first byte of a 3-byte vector to the disk 1/0 driver routines. This byte
is normally X'C3: If the drive is disabled or has not been configured (see the
SYSTEM command in the Disk System Owner's Manual) , this byte is a RET
instruction (X'C9') .

DCT+1 and DCT+2

Contain the entry address of the routines that drive the physical hardware.

DCT+3

Contains a series of flags for drive specifications.

Bit 7 -Set to "1" if the drive is software write protected, "0" if it is not. (See
the SYSTEM command in the Disk System Owner's Manual.)

Bit 6-Set to " 1" for ODEN (double density) , or "0" for SDEN (single
density) .

Bit 5-Set to "1" if the drive is an 8" drive. Set to "0" if it is a 5¼" drive.

Bit 4-A "1" causes the selection of the disk's second side. The first side
is selected if this bit is "0:' This bit value matches the side indicator
bit in the sector header written by the Floppy Disk Controller
(FDC).

Bit 3-A "1" indicates a ~ard drive (Winchester) . A "0" denotes a floppy
drive (5¼" or 8").

Bit 2- Indicates the time delay between selection of a 5¼" drive and the
first poll of the status register. A "1" value indicates 0.5 second and
a "0" indicates 1.0 second. See the SYSTEM command in the Disk
System Owner's Manual for more details.

If the drive is a hard drive, this bit indicates either a fixed or remov
able disk: "1" = fixed, "0" = removable.

Bits 1 and 0-Contain the step rate specification for the Floppy Disk Con
troller. (See the SYSTEM command in the Disk System Owner's
Manual.) In the case of a hard drive, this field may indicate the drive
address (0-3) .

DCT+4

Contains additional drive specifications.

Bit 7- (Version 6.2 only) If " 1 ", no @CKDRV is done when accessing the
drive. If an application opens several files on a drive, this bit can be
set to speed 1/0 on that drive after the first successful open is
performed.

193

In versions prior to TRSDOS 6.2, this bit is reserved for future use.
In order to maintain compatibility with future releases of TRSDOS,
do not use this bit.

Bit 6 - If "1 ", the controller is capable of double-density mode.

Bit 5- "1" indicates that this is a 2-sided floppy diskette; "0" indicates a
1-sided floppy disk. Do not confuse this bit with Bit 4 of DCT + 3.
This bit shows if the disk is double-sided; Bit 4 of DCT + 3 tells the
controller what side the current 1/0 is to be on.

If the hard drive bit (DCT + 3, Bit 3) is set, a "1" denotes double the
cylinder count stored in DCT + 6. (This implies that a logical cylin
der is made up of two physical cylinders.)

Bit 4-lf "1;' indicates an alien (non-standard) disk controller.

Bits 0-3- Contain the physical drive address by bit selection (0001 , 0010,
0100, and 1000 equal logical Drives 0, 1, 2, and 3, respectively, in
a default system). The system supports a translation only where no
more than one bit can be set.

DCT+S

If the alien bit (Bit 4) is set, these bits may indicate the starting head
number.

Contains the current cylinder position of the drive. It normally stores a copy of
the Floppy Disk Controller's track register contents whenever the FDC is
selected for access to this drive. It can then be used to reload the track register
whenever the FDC is reselected .

If the alien bit (DCT + 4, Bit 4) is set, DCT + 5 may contain the drive select code
for the alien controller.

DCT+6

Contains the highest numbered cylinder on the drive. Since cylinders are num
bered from zero, a 35-track drive is recorded as X'22; a 40-track drive as X'27,'
and an 80-track drive as X'4F.' If the hard drive bit (DCT + 3, Bit 3) is set, the true
cylinder count depends on DCT + 4, Bit 5. If that bit is a ''1;' DCT + 6 contains
only half of the true cylinder count.

DCT+7

Contains allocation information.

Bits 5-7 - Contain the number of heads for a hard drive.

Bits 0-4-Contain the highest numbered sector relative to zero. A 10-
sector-per-track drive would show X'09.' If DCT + 4, Bit 5 indicates
2-sided operation, the sectors per cylinder equals twice this
number.

DCT+8

Contains additional allocation information.

Bits 5-7 - Contain the number of granules per track allocated in the for
matting process. If DCT + 4, Bit 5 indicates 2-sided operation, the
granules per cylinder equals twice this number. For a hard drive,
this number is the total granules per cylinder.

Bits 0-4- Contain the number of sectors per granule that was used in the
formatting operation.

DCT+9

Contains the number of the cylinder where the directory is located. For any
directory access, the system first attempts to use this value to read the direc
tory. If this operation is unsuccessful , the system examines the BOOT granule
(cylinder 0) directory address byte.

194

Disk 1/0 Table

Bytes OCT+ 6, OCT+ 7, and OCT+ 8 must relate without conflicts. That is, the
highest numbered sector (+ 1) divided by the number of sectors per granule
(+ 1) must equal the number of granules per track (+ 1).

TRSDOS interfaces with hardware peripherals by means of software drivers.
The drivers are, in general , coupled to the operating system through data
parameters stored in the system's many tables. In this way, hardware not cur
rently supported by TRSDOS can easily be supported by generating driver soft
ware and updating the system tables.

Disk drive sub-systems (such as controllers for 5¼" drives, 8" drives, and hard
disk drives) have many parameters addressed in the Drive Code Table (OCT).
Besides those operating parameters, controllers also require various com
mands (SELECT, SECTOR READ, SECTOR WRITE, and so on) to control the
physical devices. TRSDOS has defined command conventions to deal with
most commands available on standard Disk Controllers.

The function value (hexadecimal or decimal) you wish to pass to the driver
should go in register B. The available functions are:

Hex Dec Function Oeeration Performed

X'00' 0 DCSTAT Test to see if drive is assigned in OCT

X'01' 1 SELECT Select a new drive and return status

X'02' 2 DCINIT Set to cylinder 0, restore, set side 0

X'03' 3 DCRES Reset the Floppy Disk Controller

X'04' 4 ASTOR Issue FDC RESTORE command

X'05' 5 STEPI Issue FDC STEP IN command

X'06' 6 SEEK Seek a cylinder

X'07' 7 TSTBSY Test to see if requested drive is busy

X'08' 8 RDHDR Read sector header information

X'09' 9 RDSEC Read sector

X'0A' 10 VRSEC Verify if the sector is readable

X'0B' 11 RDTRK Issue an FDC track read command

X'0C' 12 HDFMT Format the device

X'0D' 13 WRSEC Write a sector

X'0E' 14 WRSYS Write a system sector (for example, directory)

X'0F' 15 WRTRK Issue an FDC track write command

Function codes X'10' to X'FF' are reserved for future use.

Directory Records (DIREC)
The directory contains information needed to access all files on the disk. The
directory records section is limited to a maximum of 32 sectors because of
physical limitations in the Hash Index Table. Two additional sectors in the direc
tory cylinder are used by the system for the Granule Allocation Table and the
Hash Index Table. The directory is contained on one cylinder. Thus, a 10-sector
per-cylinder formatted disk has, at most, eight directory sectors. See the sec-

195

tion on the Hash Index Table for the formula to calculate the number of directory
sectors.

A directory record is 32 bytes in length. Each directory sector contains eight
directory records (256/32 = 8). On system disks, the first two directory records
of the first eight directory sectors are reserved for system overlays. The total
number of files possible on a disk equals the number of directory sectors times
eight (since 256/32 = 8). The number available for use is reduced by 16 on sys
tem disks to account for those record slots reserved for the operating system.
The following table shows the directory record capacity (file capacity) of each
format type. The dash suffix (-1 or -2) on the items in the density column rep
resents the number of sides formatted (for example, SDEN-1 means single
density, 1-sided).

Sectors User Files User
per Directory on Data Files on

C~linder Sectors Disk** SYS Disk

5" SDEN-1 10 8 62 48
5" SDEN-2 20 18 142 128
5" DDEN-1 18 16 126 112
5" DDEN-2 36 32 254 240
8" SDEN-1 16 14 110 96
8" SDEN-2 32 30 238 224
8" DDEN-1 30 28 222 208
8" DDEN-2 60 32 254 240
Hard Disk*

*Hard drive format depends on the drive size and type, as well as the user's
division of the physical drive into logical drives. After setting up and format
ting the drive, you can use the FREE library command to see the available
files.

**Note: Two directory records are reserved for BOOT/SYS and DIR/SYS, and
are not included in the figures for this column.

TRSDOS Version 6 is upward compatible with other TRSDOS 2.3 compatible
operating systems in its directory format. The data contained in the directory
has been extended. An SVC is included to either display an abbreviated direc
tory or place its data in a user-defined buffer area. For detailed information, see
the @DODIR and @RAMDIR SVCs.

The following information describes the contents of each directory field :

DIR+0

Contains all attributes of the designated file.

Bit 7 - If "0;· this flag indicates that the directory record is the file's primary
directory entry (FPDE). If "1;· the directory record is one of the file's
extended directory entries (FXDE) . Since a directory entry can
contain information on up to four extents (see notes on the extent
fields, beginning with DIR+ 22), a file that is fractured into more
than four extents requires additional directory records.

Bit 6-Specifies a SYStem file if " 1;· a nonsystem file if "0'.'

Bit 5- If set to " 1;' indicates a Partition Data Set (PDS) file.

Bit 4- Indicates whether the directory record is in use or not. If set to ''1;'
the record is in use. If "0;' the directory record is not active,
although it may appear to contain directory information. In contrast
to some operating systems that zero out the directory record when
you remove a file, TRSDOS only resets this bit to zero.

Bit 3-Specifies the visibility. If ''1;' the file is INVisible to a directory dis
play or other library function where visibility is a parameter. If a "0;'
then the file is VISible. (The file can be referenced if specified by
name by an @INITor @OPEN SVC.)

196

Bits 0-2 - Contain the USER protection level of the file. The 3-bit binary
value is one of the following :

0 = FULL 2 = RENAME 4 = UPDATE 6 = EXECUTE
1 = REMOVE 3 = WRITE 5 = READ 7 = NO ACCESS

DIR+1

Contains various file flags and the month field of the packed date of last
modification.

Bit 7 -Set to "1 " if the file was "CREATEd" (see CREATE library com
mand in the Disk System Owner's Manual). Since the CREATE
command can reference a file that is currently existing but non
CREATEd, it can turn a non-CREATEd file into a CREATEd one.
You can achieve the same effect by changing this bit to a "1:'

Bit 6- If set to ''1;' the file has not been backed up since its last modifica
tion. The BACKUP utility is the only TRSDOS faci lity that resets
this flag. It is set during the close operation if the File Control Block
(FCB + 0, Bit 2) shows a modification of file data.

Bit 5- If set to "1;' indicates a file in an open condition with UPDATE
access or greater.

Bit 4- If the file was modified during a session where the system date was
not maintained, this bit is set to "1:' This specifies that the packed
date of modification (if any) stored in the next three fields is not the
actual date the modification occurred. If this bit is "1;' the directory
command displays plus signs (+) between the date fields if you
request the (A) option.

Bits 0-3 - Contain the binary month of the last modification date. If this
field is a zero, DATE was not set when the file was established or
since if it was updated.

DIR+2

Contains the remaining date of modification fields.

Bits 3-7-Contain the binary day of last modification.

Bits 0-2-Contain the binary year minus 80. For example, 1980 is coded
as 000, 1981 as 001, 1982 as 010, and so on.

DIR+3

Contains the end-of-file offset byte. This byte and the ending record number
(ERN) form a pointer to the byte position that follows the last byte written. This
assumes that programmers, interfacing in machine language, properly main
tain the next record number (NRN) offset pointer when the file is closed.

DIR+4

Contains the logical record length (LRL) specified when the file was generated
or when it was later changed with a CLONE parameter.

DIR+ 5 through DIR+ 12

Contain the name field of the filespec. The filename is left justified and padded
with trailing blanks.

DIR+ 13 through DIR+ 15

Contain the extension field of the filespec. It is left justified and padded with
trailing blanks.

DIR+ 16 and DIR+ 17

Contain the OWNER password hash code.

DIR+ 18 and DIR+ 19

Contain the USER password hash code. The protection level in DIR+ 0 is asso
ciated with this password.

197

DIR+20 and DIR+21

Contain the ending record number (ERN), which is based on full sectors. If the
ERN is zero, it indicates that no writing has taken place (or that the file was not
closed properly) . If the LAL is not 256, the ERN represents the sector where the
EOF occurs. You should use ERN minus 1 to account for a value relative to sec
tor 0 of the file.

DIR+22 and DIR+23

This is the first extent field. Its contents indicate which cylinder stores the first
granule of the extent, which relative granule it is, and how many contiguous
grans are in use in the extent.

DIR + 22-Contains the cylinder value for the starting gran of that extent.

DIR + 23, Bits 5-7 -Contain the number of the granule in the cylinder indi
cated by DIR+ 22 which is the first granule of the file for that
extent. This value is relative to zero ("0" denotes the first gran,
"1" denotes the second, and so on).

DIR+ 23, Bits 0-4-Contain the number of contiguous granules, relative
to 0 ("0" denotes one gran, "1" denotes two, and so on). Since
the field is five bits, it contains a maximum of X'1 F' or 31 , which
represents 32 contiguous grans.

DIR+24 and DIR+25

Contain the fields for the second extent. The format is identical to that for
Extent 1.

DIR+26 and DIR+27

Contain the fields for the third extent. The format is identical to that for Extent 1.

DIR+28 and DIR+29

Contain the fields for the fou rth extent. The format is identical to that for
Extent 1.

DIR+30

This is a flag noting whether or not a link exists to an extended directory record.
If no further directory records are linked, the byte contains X'FF' A value of X'FE'
in this byte establishes a link to an extended directory entry. (See "Extended
Directory Records" below.)

DIR+31

This is the link to the extended directory entry noted by the previous byte. The
link code is the Directory Entry Code (DEC) of the extended directory record.
The DEC is actually the position of the Hash Index Table byte mapped to the
directory record . For more information, see the section "Hash Index Table:·

Extended Directory Records
Extended directory records (FXDE) have the same format as primary directory
records, except that only Bytes 0, 1, and 21-31 are utilized. Within Byte 0, only
Bits 4 and 7 are significant. Byte 1 contains the DEC of the directory record of
which this is an extension. An extended directory record may point to yet
another directory record, so a file may contain an "unlimited" number of extents
(limited only by the total number of directory records available).

Granule Allocation Table {GAT)

The Granule Allocation Table (GAT) contains information on the free and
assigned space on the disk. The GAT also contains data about the formatting
used on the disk.

198

A disk is divided into cylinders (tracks) and sectors. Each cylinder has a spec
ified number of sectors. A group of sectors is allocated whenever additional
space is needed. This group is called a granule. The number of sectors per
granule depends on the total number of sectors available on a logical drive. The
GAT provides for a maximum of eight granules per cylinder.

In the GAT bytes, each bit set to " 1" indicates a corresponding granule in use
(or locked out). Each bit reset to "0" indicates a granule free to be used. In a
GAT byte, bit 0 corresponds to the first relative granule, bit 1 to the second rel
ative granule, bit 2 the third, and so on. A 5¼" single density diskette is format
ted at 10 sectors per cylinder, 5 sectors per granule, 2 granules per cylinder.
Thus, that configuration uses only bits 0 and 1 of the GAT byte. The remainder
of the GAT byte contains all 1's, denoting unavailable granules. Other formatting
conventions are as follows:

Sectors Sectors Granules Maximum
per per per No. of

C~linder Granule C~linder C~linders

5" SDEN 10 5 2 80
5" ODEN 18 6 3 80
8" SDEN 16 8 2 77
8" ODEN 30 10 3 77
5-MEG HARD* 32 16 8 153

*Hard drive format depends on the drive size and type, as well as the user's divi
sion of the drive into logical drives. These values assume that one physical
hard disk is treated as one logical drive.

The above table is valid for single-sided disks. TRSDOS supports double-sided
operation if the hardware interfacing the physical drives to the CPU allows it. A
two-headed drive functions as a single logical drive, with the second side as a
cylinder-for-cylinder extension of the first side. A bit in the Drive Code Table
(DCT + 4, Bit 5) indicates one-sided or two-sided drive configuration.

A Winchester-type hard disk can be divided by heads into multiple logical
drives. Details are supplied with Radio Shack drives.

The Granule Allocation Table is the first relative sector of the directory cylinder.
The following information describes the layout and contents of the GAT.

GAT + X'00' through GAT + X'SF'

Contains the free/assigned table information. GAT + 0 corresponds to cylinder
0, GAT + 1 corresponds to cylinder 1, GAT + 2 corresponds to cylinder 2, and so
on. As noted above, bit 0 of each byte corresponds to the first granule on the
cylinder, bit 1 to the second granule, and so on. A value of "1" indicates the
granule is not available for use.

GAT + X'60' through GAT + X'BF'

Contains the available/locked out table information. It corresponds cylinder for
cylinder in the same way as the free/assigned table. It is used during mirror
image backups to determine if the destination diskette has the proper capacity
to effect a backup of the source diskette. This table does not exist for hard
disks; for this reason, mirror-image backups cannot be performed on hard disk.

GAT + X'C0' through GAT + X'CA'

Used in hard drive configurations; extends the free/assigned table from X'00'
through X'C/(Hard drive capacity up to 203 (0-202) logical or 406 physical cyl
inders is supported.

GAT+X'CB'

Contains the operating system version that was used in formatting the disk. For
example, disks formatted under TRSDOS 6.1 have a value of X'61' contained in
this byte. It is used to determine whether or not the disk contains all of the
parameters needed for TRSDOS operation.

199

GAT+X'CC'

Contains the number of cylinders in excess of 35. It is used to minimize the time
required to compute the highest numbered cylinder formatted on the disk. It is
excess 35 to provide compatibility with alien systems not maintaining this byte.
If you have a disk that was formatted on an alien system for other than 35 cyl
inders, this byte can be automatically configured by using the REPAIR utility.
(See the section on the REPAIR utility in the Disk System Owner's Manual.)

GAT+X'CD'

Contains data about the formatting of the disk.

Bit 7- If set to "1;' the disk is a data disk. If "0;' the disk is a system disk.

Bit 6- If set to " 1;· indicates double-density formatting. If "0;' indicates
single-density formatting.

Bit 5-lf set to "1;' indicates 2-sided disk. If "0;' indicates 1-sided disk.

Bits 3-4- Reserved.

Bits 0-2- Contain the number of granules per cylinder minus 1.

GAT + X'CE' and GAT + X'CF'

Contain the 16-bit hash code of the disk master password. The code is stored
in standard low-order, high-order format.

GAT + X'D0' through GAT + X'D7'

Contain the disk name. This is the name displayed during a FREE or DIR oper
ation. The disk name is assigned during formatting or during an ATTRIB disk
renaming operation. The name is left justified and padded with blanks.

GAT + X'D8' through GAT + X'DF'

Contain the date that the diskette was formatted or the date that it was used as
the destination in a mirror image backup operation in the format mm/dd/yy.

GAT + X'E0' through GAT + X'FF'

Reserved for system use.

In Version 6.2:

GAT + X'E0' through GAT + X'F4'

Reserved for system use.

GAT + X'FS' through GAT + X'FF'

Contain the Media Data Block (MDB).

GAT + X'F5 ' through GAT + X'F8' - the identifying header. These four
bytes contain a 3 (X'03'), followed by the letters LSI (X'4C',x'53',x'49').

GAT + X'F8' through GAT + X'FF' - the last seven bytes of the DCT in use
when the media was formatted . FORMAT, MemDISK, and TRSFORM4 in
stall this information. See Drive Control Table (DCT) for more information
on these bytes.

Hash Index Table (HIT)
The Hash Index Table is the key to addressing any file in the directory. It pin
points the location of a file's directory with a minimum of disk accesses, keeping
overhead low and providing rapid file access.

The system's procedure is to construct an 11-byte filename/extension field. The
filename is left-justified and padded with blanks. The file extension is then
inserted and padded with blanks; it occupies the three least significant bytes of

200

the 11-byte field. This field is processed through a hashing algorithm which pro
duces a single byte value in the range X'01' through X'FP. (A hash value of X'00'
indicates a spare HIT position.)

The system then stores the hash code in the Hash Index Table (HIT) at a posi
tion corresponding to the directory record that contains the file's directory. Since
more than one 11-byte string can hash to identical codes, the opportunity for
"collisions" exists. For this reason, the search algorithm scans the HIT for a
matching code entry, reads the directory record corresponding to the matching
HIT position, and compares the filename/extension stored in the directory with
that provided in the file specification . If both match, the directory has been
found. If the two fields do not match, the HIT entry was a collision and the algo
rithm continues its search from the next HIT entry.

The position of the HIT entry in the hash table is called the Directory Entry Code
(DEC) of the file. All files have at least one DEC. Files that are extended beyond
four extents have a DEC for each extended directory entry and use more than
one filename slot. To maximize the number of file slots available, you should
keep your files below five extents where possible.

Each HIT entry is mapped to the directory sectors by the DEC's position in the
HIT. Think of the HIT as eight rows of 32-byte fields. Each row is mapped to one
of the directory records in a directory sector: The first HIT row is mapped to the
first directory record, the second HIT row to the second directory record, and so
on. Each column of the HIT field (0-31) is mapped to a directory sector. The first
column is mapped to the first directory sector in the directory cylinder (not
including the GAT and HIT). Therefore, the first column corresponds to sector
2, the second column to sector 3, and so on. The maximum number of HIT col-
umns used depends on the disk formatting according to the formula:
N = number of sectors per cylinder minus two, up to 32.

The following chart shows the correlation of the Hash Index Table to the direc-
tory records. Each byte value shown represents the position in the HIT. This
position value is the DEC. The actual contents of each byte is either a X(00)
indicating a spare slot, or the 1-byte hash code of the file that occupies the cor-
responding directory record.

---------------------------..... ----- Columns ------------------------------------
Row 1 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

Row2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

Row3 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

Row 4 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

Row5 80 81 82 83 84 85 86 87 88 89 8A 8B BC 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

Row6 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BO BE BF

Row? C0 C1 C2 C3 C4 C5 C6 C7 ca C9 CA CB cc CD CE CF
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE OF

RowB E0 E1 E2 E3 E4 E5 E6 E7 EB E9 EA EB EC ED EE EF
F0 F1 F2 F3 F4 F5 F6 F7 FB F9 FA FB FC FD FE FF

A 5¼" single density disk has 10 sectors per cylinder, two of which are reserved
for the GAT and HIT. Since only eight directory sectors are possible, only the
first eight positions of each HIT row are used. Other formats use more columns
of the HIT, depending on the number of sectors per cylinder in the formatting
scheme.

The eight directory records for sector 2 of the directory cylinder correspond to
assignments in HIT positions 00, 20, 40, 60, 80, A0, C0, and E0. On system

201

-
disks, the following positions are reserved for system overlays. On data disks,
these positions (except for 00 and 01) are available to the user.

00 - BOOT /SYS 20 - SYS6/SYS
01 - DIR/SYS 21 - SYS7/SYS
02 - SYS0/SYS 22 - SYS8/SYS
03 - SYS1 /SYS 23 - SYS9/SYS
04-SYS2/SYS 24-SYS10/SYS
05-SYS3/SYS 25-SYS11 /SYS
06-SYS4/SYS 26-SYS12/SYS
07-SYSS/SYS 27-SYS13/SYS

These entry positions correspond to the first two rows of each directory sector
for the first eight directory sectors. Since the operating system accesses these
overlays by position in the HIT rather than by filename, these positions are
reserved on system disks.

The design of the Hash Index Table limits the number of files on any one drive
to a maximum of 256.

Locating a Directory Record

Because of the coding scheme used on the entries in the HIT table, you can
locate a directory record with only a few instructions. The instructions are:

AND 1 FH
ADD A,2

(calculates the sector)
and

AND 0E0H
(calculates the offset in that sector)

For example, if you have a Directory Entry Code (DEC) of X'84', the following
occurs when these instructions are performed:

AND 1 FH

ADD A,2

Value of accumulator
A=X'84'

A=X'04'

A=X'06'
The record is in the seventh
sector of the directory cylinder
(0-6)

Using the Directory Entry Code (DEC) again, you can find the offset into the
sector that was found using the above instructions by executing one
instruction:

AND 0E0H

Value of accumulator
A=X'84'

A=X'80'
The directory record is X'80' (128)
bytes from the beginning of
the sector

If the record containing the sector is loaded on a 256-byte boundary (LSB of the
address is X'00') and HL points to the starting address of the sector, then you
can use the above value to calculate the actual address of the directory record
by executing the instruction:

LD L,A

202

When executed after the calculation of the offset, this causes HL to point to the
record. For example:

A=X'80'
LD HL ,ll200H ;Where sector is loaded
LD L ,A ;Replace LSB with offset

HL now contains 4280H, which is the address of the directory record you
wanted.

If you cannot place the sector on a 256-byte boundary, then you can use the
following instructions:

A=X'80'
L D H L , a 2 5 G H ;Where sector is loaded
L D E , A ;Put offset in E (LSB)

LD D,0
ADD HL,DE

;Put a zero in D (MSB)
;Add two values together

HL now contains 42D6H, which is the address of the directory record.

Note that the first DEC found with a matching hash code may be the file's
extended directory entry (FXDE). Therefore, if you are going to write system
code to deal with this directory scheme, you must properly deal with the FPDE/
FXDE entries. See Directory Records for more information.

203

Programming With Restart Vectors

The Restart instruction (RST) provides the assembly language programmer
with the ability to call a subroutine with a one-byte call. If a routine is called
many times by a program, the amount of space that is saved by using the RST
instruction (instead of a three-byte CALL) can be significant.

In TRSDOS a RST instruction is also used to interface to the operating system.
The system uses RST 28H for supervisor calls. RSTS 00H, 30H, and 38H are
for the system's internal use.

RSTs 08H, 10H, 18H, and 20H are available for your use. Caution: Some pro
grams, such as BASIC, may use some of these RSTs.

Each RST instruction calls the address given in the operand field of the instruc
tion. For example, RST 18H causes the system to push the current program
counter address onto the stack and then set the program counter to address
0018H. RST 20H causes a jump to location 0020H, and so on.

Each RST has three bytes reserved for the subroutine to use. If the subroutine
will not fit in three bytes, then you should code a jump instruction (JP) to where
the subroutine is located. At the end of the subroutine, code a return instruction
(RET). Control is then transferred to the instruction that follows the RST.

For example, suppose you want to use RST 18H to call a subroutine named
"ROUTINE'.' The following routine loads the restart vector with a jump instruc
tion and saves the old contents of the restart vector for later use.

SETRST: LD I>(,0018H iRes tart area address
LD IY,RDATA iData a re a address
LD B,3 iN u111ber of bytes to fTlOV e

LOOP: LD Adi)-() iRead a byt e f ro111
irestart area

LD CtCIY> iRead a b >' t e f rOfTl data
iarea

LD (I)O ,C iStore this byte in
irestart area

LD (IY > ,A iStore this byte in data
i a re a

INC IV I\ i Inc re111ent restart a re a
iPointer

INC IY i Inc re111ent data area
iPointer

DJNZ LOOP iLooP ti 11 3 b>'t es 1110 ve d
RET iReturn 1,.ih e n done

RDATA: DEFB 0C3H j J UfTl P in str uctio n (JP)
DEFW ROUTINE iOPerand (n a111e of

isubroutine)
Before exiting the program, calling the above routine again puts the original
contents of the restart vector back in place.

KFLAG$ (BREAK), (PAUSE), and (ENTER)
Interfacing

KFLAG$ contains three bits associated with the keyboard functions of BREAK,
PAUSE ((SHIFTJ (@)), and ENTER. A task processor interrupt routine (called the
KFLAG$ scanner) examines the physical keyboard and sets the appropriate
KFLAG$ bit if any of the conditions are observed. Similarly, the RS-232C driver
routine also sets the KFLAG$ bits if it detects the matching conditions being
received.

211

Many applications need to detect a PAUSE or BREAK while they are running.
BASIC checks for these conditions after each logical statement is executed
(that is, at the end of a line or at a" :"). That is how, in BASIC, you can stop a
program with the (BREAK) key or pause a listing.

One method of detecting the condition in previous TRSDOS operating systems
was to issue the @KBD supervisor call to check for BREAK or PAUSE
((SHIFTl@:l), ignoring all other keys. Unfortunately, this caused keyboard type
ahead to be ineffective; the @KBD SVC flushed out the type-ahead buffer if
any other keystrokes were stacked up.

Another method was to scan the keyboard, physically examining the keyboard
matrix. An undesirable side effect of this method was that type-ahead stored up
the keyboard depression for some future unexpected input request. Examining
the keyboard directly also inhibits remote terminals from passing the BREAK or
PAUSE condition.

In TRSDOS Version 6, the KFLAG$ scanner examines the keyboard for the
BREAK, PAUSE, and ENTER functions. If any of these conditions are detected,
appropriate bits in the KFLAG$ are set (bits 0, 1, and 2 respectively).

Note that the KFLAG$ scanner only sets the bits. It does not reset them
because the "events" would occur too fast for your program to detect. Think of
the KFLAG$ bits as a latch. Once a condition is detected (latched), it remains
latched until something examines the latch and resets it-a function to be per
formed by your KFLAG$ detection routine.

Under Version 6.2, you can use the @CKBRKC SVC, SVC 106, to see if the
BREAK key has been pressed. If a BREAK condition exists, @CKBRKC resets
the break bit of KFLAG$.

For illustration, the following example routine uses the BREAK and PAUSE
conditions:

KFLAG$ EQU 112)

@FLAGS EQU 101
@KBD EQU 8
@KEY EQU 1
@PAUSE EQU 18
CKPAWS LD A,@FLAGS iGet Fla !ls Pointer

RST 28H ; into re!lister IY
LD A,<IY+KFLAG$) iGe t the KFLAG$
RRCA iB it 12) to earn·
JP C,GOTBRK iGo on BREAK
RRCA iB it 1 to car n ·
RET NC iReturn if no Pause
CALL RESKF L iReset the fl a!I
PUSH DE

FLU SH LD A,@KBD iFlush tYPe-ahead
RST 28H ibuffer 1A1hile
JR Z,FLUSH ii!lnorin!I errors
POP DE

PROMPT PUSH DE
LD A,@KEY iWait on f, e }' ent n ·
RST 28H
POP DE
CP 80H iAbort on (BREAK)
JP Z,GOTBR K
CP 80H iI!lnore PAUSE;
JR Z,PROMPT ielse • . •

RESKFL PUSH HL ireset KFLAG$
PUSH AF
LD A,@FLAGS iGet f 1 a!ls Pointer
RST 28H ; into re!lister IY

RESKFLl LD A, (IY+KFLAG$) iGet the fl a!I
AND 0FBH iStriP ENTER,

212

LD (I Y+KFLAG$) ,A ; PA US E , BREAK
PUSH BC
LD B t16
LD A,@PAUSE ;P a use a 1,.i hile
RST 28H
POP BC
LD A, (IY+KFLAG$) iCh ec f, i f f in 9'e r i s
AND 3 is t ill on f, e Y

JR NZ ,RESKF L1 ;Reset i t a9'a in
POP AF ;Res t o r e re!l' i ster s
POP HL ; and exit
RE T

The best way to explain this KFLAG$ detection routine is to take it apart and
discuss each subroutine. The first piece reads the KFLAG$ contents:

KFLAG$ EQU 10
CKPA WS LD A,@FLAGS ; Get Fla 9' s Pointer

RST 28H i i n to re!l' i ster IY
LD A,<IY+K FL AG$) iG e t the KFLAG$
RRCA iB it 0 to c a rr >'
JP C,G OTBR K i Go on BREA K
RRCA iB i t 1 to ca r r>'
RET NC iRet urn if no Paus e

The @FLAGS SVC obtains the flags pointer from TRSDOS. Note that if your
application uses the IV index register, you should save and restore it within the
CKPAWS routine. (Alternatively, you could use @FLAGS to calculate the loca
tion of KFLAG$, use register HL instead of IV, and place the address into the LD
instructions of CKPAWS at the beginning of your application.)

The first rotate instruction places the BREAK bit into the carry flag. Thus, if a
BREAK condition is in effect, the subroutine branches to "GOTBRK;' which is
your BREAK handling routine.

If there is no BREAK condition , the second rotate places what was originally in
the PAUSE bit into the carry flag. If no PAUSE condition is in effect, the routine
returns to the caller.

This sequence of code gives a higher priority to BREAK (that is, if both BREAK
and PAUSE conditions are pending, the BREAK condition has precedence) .
Note that the GOTBRK routine needs to clear the KFLAG$ bits after it services
the BREAK condition . This is easi ly done via a call to RESKFL.

The next part of the routine is executed on a PAUSE condition :

CAL L RESKFL iRes e t t he fl a9'
PUSH DE

FLUSH LD A,@KBD iFlush t >' Pe - a head
RST 28H ;buff e r while
JR Z,FLUSH h9'n o rin 9' errors
POP DE

First the KFLAG$ bits are reset via the call to RESKFL. Next, the routine takes
care of the possibility that type-ahead is active. If it is, the PAUSE key was prob
ably detected by the type-ahead routine and so is stacked in the type-ahead
buffer also. To flush out (remove all stored characters from) the type-ahead
buffer, @KBD is called until no characters remain (an NZ is returned).

Now that a PAUSEd state exists and the type-ahead buffer is cleared , the rou
tine waits for a key input:

PR OMP T PUSH DE
LD A,@ KEY iWait on ke y entr y
RS T 28H
POP DE
C P 8 0 H ;A bo r t on (BREAK)
JP Z , GOT BRK

213

CP
JR

GIZlH
Z,PROMPT

; I 9'no re PAUSE i
ielse , , ,

The PROMPT routine accepts a BREAK and branches to your BREAK han
dling routine. It ignores repeated PAUSE (the 60H). Any other character causes
it to fall through to the following routine which clears the KFLAG$:

RESKFL PUSH HL ; reset KFLAG$
PUSH AF
LD A ,@FLAGS iGet fla9's Pointer
RST 28H

RESKFL 1 LD A,< I Y+KFLAG$)
iinto re9'ister IY
iGet the fla9'
iStriP ENTER,
iPAUSE, BREAK

AND IZlFBH
LD (I Y+KFLAG$) ,A
PUSH BC
LD B dB
LD A ,@PAUSE
RST 28H
POP BC
LD AtCIY+KFLAG$) iChecf(if fin9'er is
AND 3 istill on f(e}'
JR NZ,RESKFL1
POP AF
POP HL
RET

iReset it a9'ain
iRestore re9'isters
iand exit

The RESKFL subroutine should be called when you first enter your application.
This is necessary to clear the flag bits that were probably in a "set" condition.
This "primes" the detection. The routine should also be called once a BREAK,
PAUSE, or ENTER condition is detected and handled. (You need to deal with
the flag bits for only the conditions you are using.)

Interfacing to @ICNFG
With the TRSDOS library command SYSGEN, many users may wish to SYS
GEN the RS-232C driver. Before doing that, the RS-232C hardware (UART,
Baud Rate Generator, etc.) must be initialized. Simply using the SYSGEN com
mand with the RS-232C driver resident is not enough; some initialization ·
routine is necessary. The @ICNFG (Initialization CoNFiGuration) vector is
included in TRSDOS to provide a way to invoke a routine to initialize the RS-
232C driver when the system is booted. It also provides a way to initialize the
hard disk controller at power-up (required by the Radio Shack hard disk
system).

The final stages of the booting process loads the configuration file CONFIG/
SYS if it exists. After the configuration file is loaded, an initialization subroutine
CALLs the @ICNFG vector. Thus, any initialization routine that is part of a
memory configuration can be invoked by chaining into @ICNFG.

If you need to configure your own routine that requires initialization at power-up,
you can chain into @ICNFG. The following procedure illustrates this link. The
first thing to do is to move the contents of the @ICNFG vector into your initiali
zation routine:

LD A,@FLAGS iGet fla9's Pointer
RST 28H ii n to re9'ister IY
LD A tC IY+28) iGet opcode
LD <LINK) ,A
LD L tC IY+28) iGet address LOW
LD H, (IY+30) iGet address HIGH
LD <LINK+1>,HL

This subroutine does this by transferring the 3-byte vector to your routine. You
then need to relocate your routine to its execution memory address. Once this

214

is done, transfer the relocated initialization entry point to the @ICNFG vector as
a jump instruction :

LD
LD
LD
LD
LD

HL tlNIT
<I Y+28ltL
(IY+30l tH
At0C3H
(IY+28) , A

iG e t (r el o c a ted)
i ini t a d dress

iS e t J P ins t r uc tio n

If you need to invoke the initialization routine at this point, then you can use:

CAL L RO UTI NE il n v o f, e }' o ur ro u t in e

Your initialization routine would be unique to the function it was to perform, but
an overall design would look like this:

INIT CA LL ROUTINE iS ta r t o f i n i t
LINK DEF S 3 i Co ntinu e on
ROUT I NE

Yo u r initial i za t io n ro ut i ne

RET

After linking in your routine, perform the SYSGEN. If you have followed these
procedures, your routine will be invoked every time you start up TRSD0S.

Interfacing to @KITSK
Background tasks can be invoked in one of two ways. For tasks that do not
require disk 1/0 , you can use the RTC (Real Time Clock) interrupt and one of
the 12 task slots (or other external interrupt). For tasks that require disk 1/0 , you
can use the keyboard task process.

At the beginning of the TRSD0S keyboard driver is a call to @KITSK. This
means that any time that @KBD is called, the @KITSK vector is also called.
(The type-ahead task, however, bypasses this entry so that @KITSK is not
called from the type-ahead routine.) Therefore, if you want to interface a back
ground routine that does disk 1/0, you must chain into @KITSK.

The interfacing procedure to @KITSK is identical to that shown in the section
" Interfacing to @ICNFG;' except that IY + 31 through IY + 33 is used to refer
ence the @KITSK vector. You may want to start your background routine with:

START CALL ROU TINE i inv of, e tasf,
LIN K DE FS 3 iFor @KITSK h ooK
ROUTI NE EQ U $ iStart of the tas f,

Be aware of one major pitfall. The @KBD routine is invoked from @CMNDI and
@CMNDR (which is in SYS1 /SYS). This invocation is from the @KEVIN call ,
which fetches the next command line after issuing the ''TRSD0S Ready" mes
sage. If your background task executes and opens or closes a file (or does any
thing to cause the execution of a system overlay other than SYS1), then SYS1
is overwritten by SYS2 or SYS3. When your routine finishes, the @KEVIN han
dler tries to return to what called it-SYS 1, which is no longer resident. There
fore, any task chained to @KITSK which causes a resident SYS1 to be over
written must reload SYS1 before returning.

You can use the following code to reload SYS1 if SYS1 was resident prior to
your task's execution :

ROUTINE LD
RST
LD
AND
LD

215

A,@F LAGS
2 8H
AdIY - 1)
BFH
(OLDS YS+ 1) tA

iGet fla f s Poi n ter
i into refiste r IY
i Get res i de n t ov er -
i 1 a Y

it h e
and re 111o v e
e n tr y cod e

rest of Your task

E>(IT EOU $

OLDSYS LD A ,0
CP 83H
RET NZ
RST 28H

Interfacing to the Task Processor

;Get old overlay#
;was it SYSl?
;Return if not; else
;Get SYSl Per re~, A
;(no RET needed)

This section explains how to integrate interrupt tasks into your applications.

One of the hardware interrupts in the TRS-80 is the real time clock (ATC). The
ATC is synchronized to the AC line frequency and pulses at 60 pulses per sec
ond, or once every 16.67 milliseconds. (Computers operating with 50 Hz AC
use a 50 pulses per second ATC interrupt. In this case, all time relationships
discussed in this section should be adjusted to the 50 Hz base.)

A software task processor manages the ATC interrupt in performing back
ground tasks necessary to specific functions of TRSDOS (such as the time
clock, blinking cursor, and so on). The task processor allows up to 12 individual
tasks to be performed on a "time-sharing" basis.

These tasks are assigned to "task slots" numbered from 0 to 11. Slots 0-7 are
considered "low priority" tasks (executing every 266.67 milliseconds). Slots 8-
10 are medium priority tasks (executing every 33.33 milliseconds). Slot 11 is a
high priority task (executing every 16.66 milliseconds SYSTEM (FAST) or 33.33
milliseconds SYSTEM (SLOW)). Task slots 3, 7, 9, and 10 are reserved by the
system for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions,
respectively.

TRSDOS maintains a Task Control Block Vector Table (TCBVT) which contains
12 vectors, one for each of the 12 task slots. TRSDOS contains five supervisor
calls that manage the task vectors. The five SVCs and their functions are:

@CKTSK Checks to see whether a task slot is unused or active
@ADTSK Adds a task to the TCBVT
@RMTSK Removes a task from the TCBVT
@KLTSK Removes the currently executing task
@RPTSK Replaces the TCB address for the current task

The TRSDOS Task Control Block Vector Table contains vector pointers. Each
TCBVT vector points to an ~ddress in memory, which in turn contains the
address of the task. Thus, the tasks themselves are indirectly addressed.

When you are programming a task to be called by the task processor, the entry
point of the routine needs to be stored in memory. If you make this storage loca
tion the beginning of a Task Control Block (TCB), the reason for indirect vector
ing of interrupt tasks will become more clear. Consider an example TCB:

MYTCB DEFW MYTASK
COUNTER DEFB 15
TEMPY DEFS 1
MYTASK RET

This is a useless task, since the only thing it does is return from the interrupt.
However, note that a TCB location has been defined as "MYTCB" and that this
location contains the address of the task. A few more data bytes immediately
following the task address storage have also been defined.

Upon entry to a service routine, index register IX contains the address of the
TCB. You can therefore address any TCB data using index instructions. For
example, you could use the instruction "DEC (IX+ 2)" to decrement the value
contained in COUNTER in the above routine.

216

8/Using the Supervisor Calls

Calling Procedure

Supervisor Calls (SVCs) are operating system routines that are available to
assembly language programs. These routines alter certain system functions
and conditions, provide file access, and perform various computations. They
also perform 1/0 to the keyboard, video display, and printer.

Each SVC has a number which you specify to invoke it. These numbers range
from 0 to 104.

In addition , under Version 6.2, you can write your own operating system rou
tines using the numbers 124 through 127 to install your own SVC's. See Ap
pendix E, "Programmable SVCs" for more information.

To call a TRSDOS SVC:

1 . Load the SVC number for the desired SVC into register A. Also load any
other registers which are needed by the SVC, as detailed under Supervisor
Calls.

2. Execute a RST 28H instruction.

Note: If the SVC number supplied in register A is invalid, the system prints the
message "System Error xx·; where xx is usually 2B. It then returns you to
TRSDOS Ready (not to the program that made the invalid SVC call).

The alternate register set (AF; BC; DE; HL.:) is not used by the operating system.

Program Entry and Return Conditions
When a program executed from the @CMNDI SVC is entered, the system
return address is placed on the top of the stack. Register HL will point to the first
non-blank character following the command name. Register BC will point to the
first byte of the command line buffer.

Three methods of return from a program back to the system are available: the
@ABORT SVC, the @EXIT SVC, and the RET instruction. For application pro
grams and utilities, the normal return method is the @EXIT SVC. If no error con
dition is to be passed back,. the HL register pair must contain a zero value. Any
non-zero value in HL causes an active JCL to abort.

The @ABORT SVC can be used as an error return back to the system; it auto
matically aborts any active JCL processing. This is done by loading the value
X'FFFF' into the HL register pair and internally executing an @EXIT SVC.

If stack integrity is maintained, a RET instruction can be used since the system
return address is put on the stack by @CMNDI. This allows a return if the pro
gram was called with @CMNDR.

Most of the SVCs in TRSDOS Version 6 set the Z flag when the operation spec
ified was successful. When an operation fails or encounters an error, the Z flag
is reset (also known as NZ flag set) and a TRSDOS error code is placed in the
A register. The remaining SVCs use the ZINZ flag in differing ways, so you
should refer to the description of the SVCs you are using to determine the exit
conditions.

227

Supervisor Calls

The TRSDOS Supervisor Calls are:

Keyboard SVCs

@KBD
@KEY
@KEVIN

Printer and Video SVCs

@DSP
@DSPLY
@LOGER
@LOGOT
@MSG
@PRT
@PRINT
@VDCTL

Disk SVCs

@DCINIT
@OGRES
@DCSTAT
@RDSEC
@RDSSC
@RSLCT
@ASTOR
@SEEK
@SLCT
@STEPI
@VRSEC
@WRSEC
@WRSSC
@WRTRK

System Control SVCs

@ABORT
@BREAK
@CMNDI
@CMNDR
@EXIT
@FLAGS
@HIGH$
@IPL
@LOAD
@RUN

Special Purpose Disk SVCs

@DIRRD
@DIRWR
@GTDCT
@HDFMT
@RDHDR
@RDTRK

228

Byte 1/0 SVCs

@CTL
@GET
@PUT

File Control SVCs

@CLOSE
@FEXT
@FNAME
@FSPEC
@INIT
@REMOV
@OPEN
@RENAM

Disk File Handler SVCs

@BKSP
@CKEOF
@LOG
@LOF
@PEOF
@POSN
@READ
@REW
@RREAD
@RWRIT
@SEEKSC
@SKIP
@VER
@WEOF
@WRITE

TRSDOS Task Control SVCs

@ADTSK
@CKTSK
@KLTSK
@RMTSK
@RPTSK

Special Overlay SVCs

@CKDRV
@DEBUG
@DODIR
@ERROR
@PARAM
@RAMDIR

@CKBRKC SVC Number 106

Check BREAK bit and clear it Version 6.2 only
Checks to see if the BREAK key has been pressed. If a BREAK condition exists,
@CKBRKC resets the break bit, Bit 0 of KFLAG$.

Entry Conditions:

A= 106(X'6A')

Exit Conditions:

Success always.
If Z flag is set, the break bit was not detected. If NZ flag is set, the
break bit was detected and is cleared. If the BREAK key is being de
pressed, the SVC will not return until the key is released.

General:

Only AF is altered by this SVC.

236.1

236.2 - " intentionally blank"

@CKDRV
Check Drive

SVC Number 33

Checks a drive reference to ensure that the drive is in the system and a
TRSDOS Version 6 or LOOS 5.1.3 (Model Ill Hard Disk Operating System) for
matted disk is in place.

Entry Conditions:
A= 33 (X'21')
C=logical drive number (0-7)

Exit Conditions:
Success always.

If Z flag is set, the drive is ready.
If CF is set, the disk is write protected.

If NZ flag is set, the drive is not ready. The user may examine OCT+ 0
to see if the drive is disabled.

Example:
See Sample Program D, lines 35-55.

237

@CKEOF SVC Number 62

Check for End-Of-File
Checks for the end of file at the current logical record number.

Entry Conditions:
A = 62 (X'3E')
DE= pointer to the FCB of the file to check

Exit Conditions:
Success always.

General:

If Z flag is set, LOC does not point at the end of file (LOC < LOF).
If NZ flag is set, test A for error number:

If A= X'1 C; LOC points at the end of the file (LOC = LOF).
If A= X'1 D; LOC points beyond the end of the file (LOC > LOF) .
If A!- X'1 C' or X'1 o; then A= error number.

Only AF is altered by this SVC.

Example:
See Sample Program C, lines 352-353.

238

@CKTSK SVC Number 28

Check if Task Slot in Use
Checks to see if the specified task slot is in use.

Entry Conditions:
A=28 (X'1C')
C = task slot to check (0-11)

Exit Conditions:
Success always.

If Z flag is set, the task slot is available for use.
If NZ flag is set, the task slot is already in use.

General:
AF and HL are altered by this SVC.

Example:
See Sample Program F, lines 70-73.

239

@CLOSE SVC Number 60

Close a File or Device
Terminates output to a file or device. Any unsaved data in the buffer area is
saved to disk and the directory is updated. All files that have been written to
must be closed , as well as all files opened with UPDATE or higher access.

If you remove a diskette containing an open file , any attempt to close the fi le
results in the message :

** CLOSE FAULT ** error message, < ENTER> to retry , < BREAK> to
abort

where error message is usually "Drive not ready". You may put the diskette
back in the drive and :

1. Press (ENTER) to close the file.
2. Press (BREAK) to abort the close.

If you press (BREAK), the NZ flag is set and Register A contains X'20', the error
code for an_ Illegal drive number error.

Entry Conditions:
A = 60 (X'3C')
DE= pointer to FCB or DCB to close

Exit Conditions:
Success, Z flag set. The file or device was closed. The filespec (excluding

the password) or the devspec is returned to the FCB or DCB.
Failure, NZ flag set.

A= error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program C, lines 360-368.

240

@CLS SVC Number 105

Clear Video Screen Version 6.2 only

Clears the video screen by sending a Home Cursor (X'1 C') and Clear to End of
Frame (X'1 F') sequence to the video driver.

Entry Conditions:

A = 105(X'69')

Exit Conditions:

Success, Z flag is set.
Failure, NZ is set.

A = error number

General:

Only AF is altered by this SVC.

240.1

- -

240.2 - " intentionally blank"

@CTL SVC Numbers

Output a Control Byte
Outputs a control byte to a logical device. The DCB TYPE byte (DCB + 0, Bit 2)
must permit CTL operation. See the section "@CTL Interfacing to Device Driv
ers" for information on which of the functions listed below are supported by the
system device drivers.

Entry Conditions:
A =5 (X'05')
DE= pointer to DCB to control output
C selects one of the following functions:

If C = 0, the status of the specified device will be returned.
If C = 1, the driver is requested to send a BREAK or force an interrupt.
If C = 2, the initialization code of the driver is to be executed.
If C = 3, all buffers in the driver are to be reset. This causes all pending

1/0 to be cleared.
If C = 4, the wakeup vector for an interrupt-driven driver is specified by

the caller.
IV = address to vector when leaving driver. If IV = 0, then

the wakeup vector function is disabled. The RS-232C
driver COM/DVR ($CL), is the only system driver that
provides wakeup vectoring.

If C = 8, the next character to be read will be returned. This allows data
to be "previewed" before the actual @GET returns the character.

Exit Conditions:
If C = 0,

Z flag set, device is ready
NZ flag set, device is busy

A = status image, if applicable
Note: This is a hardware dependent image.

If C = 1,
Success, Z flag set. BREAK or interrupt generated.
Failure, NZ flag set

A = error number
If C = 2,

Success, Z flag set. Driver initialized.
Failure, NZ flag set

A = error number
If C = 3,

Success, Z flag set. Buffers cleared.
Failure, NZ flag set.

A= error number
If C = 4,

Success always.
IV = previous vector address

This function is ignored if the d ri ver does not suppo rt wakeup
vectoring .

lfC=8,
Success, Z flag set. Next character returned.

A= next character in buffer
Failure, NZ flag set. Test register A:

If A= 0, no pending character is in buffer
If A cl= 0, A contains error number. (TRSDOS driver returns Error 43.)

243

General:

BC, DE, HL, and IX are saved.
Function codes 5 to 7, 9 to 31 , and 255 are reserved for the system. Function codes

32 to 254 are available for user definition.
Entry and exit conditions for user-defined functions are up to the design of the user

supplied driver.

Example:
See the section "Device Driver and Filter Templates:·

244

@ERROR SVC Number 26

Entry to Post an Error Message
Provides an entry to post an error message. If bit 7 of register C is set, the error
message is displayed and return is made to the calling program. If bit 6 is not
set, the extended error message is displayed. Under versions prior to 6.2 the
error display is in the following format:

*** Errcod=xx, Error Message string***
<filesPec or devsPec >

Referenced at X'dddd'

Under Version 6.2 the error display is in the following format:

** Error code= xx, Returns to)-("dddd'
** Error ,,1essage string
<filesPec, devsPec, or aper, FCB / DCB status >
Last Bl.JC= nnn, Returned to)-(" rrrr'

dddd is the return address of the @ERROR SVC in the application program.
nnn is the last SVC executed before the @ERROR SVC request.
rm is the address the previous SVC returned to in the application program.

If bit 6 is set, then only the "Error message string" is displayed. This bit is
ignored if bit 6 of SFLAG$ (the extended error message bit) is set. If bit 6 of
CFLAG$ is set, then no error message is displayed. If bit 7 of CFLAG$ is set,
then the "Error message string" is placed in a user buffer pointed to by register
pair DE. See @FLAGS (SVC 101) for more information on SFLAG$ and
CFLAG$.

Entry Conditions:
A= 26 (X'1 A')
C = error number with bits 6 and 7 optionally set

Exit Conditions:
Success always.

General:
To avoid a looping condition that could result from the display device gen

erating an error, do not check for errors after returning from @ERROR.
If you do not set bit 6 of register C, then you should execute this SVC only

after an error has actually occurred.

Example:
See Sample Program C, lines 379-389.

259

@EXIT
Exit to TRSDOS

SVC Number 22

This is the normal program exit and return to TRSDOS. An error exit can be
done by placing a non-zero value in HL. Values 1 to 62 indicate a primary error
as described in TRSDOS Error Codes (Appendix A) . (A non-zero value in HL
causes an active JCL to abort.)

Entry Conditions:
A = 22 (X'16')
HL = Return Code

If HL = 0, then no error on exit.
If HL !- 0, then the @ABORT SVC returns X'FFFF' in HL automatically.

General:
This SVC does not return.

Example:
See Sample Program 8, lines 206-207.

260

@FEXT SVC Number 79

Set Up Default File Extension
Inserts a default file extension into the File Control Block if the file specification
entered contains no extension. @FEXT must be done before the file is opened.

Entry Conditions:
A = 79 (X'4F')
DE= pointer to FCB
HL = pointer to default extension (3 characters; alphabetic characters

must be upper case and first character must be a letter)

Exit Conditions:
Success always.

AF and BC are altered by this SVC.
If the default extension is used, HL is also altered.

Example:
See Sample Program C, lines 111-132.

261

@FLAGS SVC Number 101

Point IV to System Flag Table
Points the IY register to the base of the system flag table. The status flags listed
below can be referenced off IY. You can alter those bits marked with an asterisk
(*) . Bits without an asterisk are indicators of current conditions, or are unused
or reserved.

Note: You may wish to save KFLAG$ and SFLAG$ if you intend to modify them
in your program, and restore them on exit.

Entry Conditions:
A= 101 (X'65')

Exit Conditions:
Success always.
IY = pointer to the following system information:
IY - 1 Contains the overlay request number of the last system module

resident in the system overlay region.
IY + 0 = AFLAG$ (allocation flag under Version 6.2 only)

IY + 2 = CFLAG$

Contains the starting cylinder number to be used when
searching for free space on a diskette. It is normally 1.
If the starting cylinder number is larger than the number
of cylinders for a particular drive, 1 is used for that drive.

* bit 7 - If set, then @ERROR will transfer the "Error message
string" to your buffer instead of displaying it. The mes
sage is terminated with X'0D.'

* bit 6 - If set, do not display system error messages 0-62. See
@ERROR (SVC 26) for more information.

* bit 5 - If set, sysgen is not allowed.
* bit 4 - If set, then @CMNDR will execute only system library

commands.
bit 3 - If set, @RUN is requested from either the SET or

SYSTEM (DRIVER=) commands.
bit 2 - If set, @KEVIN is executing due to a request from

SYS1.
bit 1 - If set, @CMNDR is executing. This bit is reset by

@EXIT and @CMNDI.
* bit 0 - If set, HIGH$ cannot be changed using @HIGH$

(SVC 100). This bit is reset by @EXIT and @CMNDI.
IY + 3 = DFLAG$ (device flag)

* bit 7 - "1" if GRAPHIC printer capability desired on screen
print ((CONTROL) GJ causes screen print. See the SYS
TEM (GRAPHIC) command under ''Technical Infor
mation on TRSDOS Commands and Utilities'.')

bit 6 - "1" if KSM module is resident
bit 5 - Currently unused
bit 4 - "1" if MemDisk active
bit 3 - Reserved
bit 2 - "1" if Disk Verify is enabled

* bit 1 - "1" if TYPE-AHEAD is active
bit 0 - "1" if SPOOL is active

IY + 4 = EFLAG$ (ECI flag under Version 6.2 only)
Indicates the presence of an ECI program. If any of the
bits are set, an ECI is used, rather than the SYS1 inter
preter. The ECI program may use these bits as necce
sary. However, at least one bit must be set or the ECI is
not executed.

262

IY + 5 = FEMSK$ (mask for port 0FEH)
IY + 8 = IFLAG$ (international flag)

* bit 7 - If "1;' 7-bit printer filter is active
If "O;' normal 8-bit filters are present

* bit 6 - If "1;' international character translation will be per-
formed by printer driver
If "O;' characters received by printer driver will be sent
to the printer unchanged

bit 5 - Reserved for future languages
bit 4 - Reserved for future languages
bit 3 - Reserved for future languages
bit 2 - Reserved for future languages
bit 1 - If "1;' German version of TRSDOS is present
bit 0 - If "t' French version of TRSDOS is present
If bits 5-0 are all zero, then USA version of TRSDOS is present.

IY + 10 = KFLAG$ (keyboard flag)
bit 7 - "1" if a character is present in the type-ahead buffer
bit 6 - Currently unused

* bit 5 - "1" if CAPS lock is set
bit 4 - Currently unused
bit 3 - Currently unused

* bit 2 - "1" if (ENTER) has been pressed
* bit 1 - "1" if (SHIFT) CW has been pressed (PAUSE)
* bit 0 - "1" if (BREAK) has been pressed

Note: To use bits 0-2, you must first reset them and then test to
see if they become set.

IY + 12 = MODOUT (image of port 0ECH)
IY + 13= NFLAG$ (network flag under Version 6.2)

bit 7 - Reserved for system use.
bit 6 - If set, the application program is in the task processor.

Programmers must not modify this bit.
bit 5 - Reserved for system use.
bit 4 - Reserved for system use.
bit 3 - Reserved for system use.
bit 2 - Reserved for system use.
bit 1 - Reserved for system use.

* bit O - If set, the "file open bit" is written to the directory.
IY + 14= OPREG$ (memory management & video control image)
IY + 17 = RFLAG$ (retry flag under Version 6.2 only)

Indicates the number of retrys for the floppy disk driver.
This should be an even number larger than two.

IY + 18 = SFLAG$ (system flag)
bit 7 - "1" if DEBUG is to be turned on

* bit 6 - " 1" if extended error messages desired (see

bit 5
* bit 4

bit 3

* bit 2
* bit 1
* bit 0

@ERROR for message format) ; overrides the setting
of bit 6 of register C on @ERROR (SVC 26) and
should be used only when testing

- "1" if DO commands are being executed
- "1" if BREAK disabled
- " 1" if the hardware is running at 4 mhz (SYSTEM

(FAST)). If "0;' the hardware is running at 2 mhz (SYS
TEM (SLOW)) .

- "1 " if LOAD called from RUN
- "1" if running an EXECute only file
- "1" specifies no check for matching LRL on file open

263

and do not set file open bit in directory. This bit should
be set just before executing an @OPEN (SVC 59) if
you want to force the opened file to be READ only dur
ing current 1/0 operations. As soon as either call is
executed, SFLAG$ bit 0 is reset. If you want to disable
LRL checking on another file, you must set SFLAG$
bit 0 again.

IY + 19 = TFLAG$ (type flag under Version 6.2 only)
Identifies the Radio Shack hardware model. TFLAG$
allows programs to be aware of the hardware environ
ment and the character sets available for the display.
Current assignments are:

2 indicates Model II
4 indicates Model 4
5 indicates Model 4P

12 indicates Model 12
IY + 20 = UFLAG$ (user flag under Version 6.2 only)

May be set by application programs and is sysgened
properly.

IY + 21 = VFLAG$
bit 7 - Reserved for system use

* bit 6 - "1" selects solid cursor, "0" selects blinking cursor
bit 5 - Reserved for system use

* bit 4 - "1" if real time clock is displayed on the screen
bits 0-3 - Reserved for system use

IY + 22 = WRINTMASK$ (mask for WRINTMASK port)
IY + 26 = SVCTABPTR$ (pointer to the high order byte of the SVC table

address ; low order byte = 00)
IY + 27 = Version ID byte (60H = TRSDOS version 6.0.x.x,

61 H = TRSDOS version 6.1.x.x, etc.)
IY - 47 = Operating system release number. Provides a th ird and fourth

character (12H = TRSDOS version x.x.1.2)
IY + 28
to
IY + 30 = @ICNFG vector
IY + 31
to
IY + 33 = @KITSK vector

263.1

@FNAME
Get Filename

SVC Number 80

Gets the filename and extension from the directory using the specified Direc
tory Entry Code (DEC) for the file.

Entry Conditions:
A = 80 (X'50')
DE= pointer to 15-byte buffer to receive filename!extension:drive, fol

lowed by a X'(J)D ' as a terminator
B = DEC of desired file
C = logical drive number of drive containing file (0-7)

Exit Conditions:
Success, Z flag set.

HL = pointer to directory entry specified by register B
Failure, NZ flag set.

General:

A = error number
HL is altered.

AF and BC are always altered.
If the drive does not contain a disk, this SVC may hang indefinitely waiting

for formatted media to be placed in the drive. The programmer should
perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may
return with the Z flag set and HL pointing to a random address. Care
should be taken to avoid using the wrong value for the DEC in this call.

Example:
See Sample Program C, lines 274-286.

264

264. 1 - "intentionally blank"

@VDCTL
Video Functions

SVC Number 15

Performs various functions related to the video display. The B register is used
to pass the function number.

Entry Conditions:
A= 15 (X'0F')
B selects one of the following functions:

If B = 1, return the character at the screen position specified by HL.
H = row on the screen (0-23), where 0 is the top row
L = column on the screen (0-79), where 0 is the leftmost column

If B = 2, display the specified character at the position specified by
HL.

C = character to be displayed
H=row on the screen (0-23), where 0 is the top row
L = column on the screen (0-79), where 0 is the leftmost column

If B = 3, move the cursor to the position specified by HL. This is done
even if the cursor is not currently displayed.

H=row on the screen (0-23) , where 0 is the top row
L = column on the screen (0-79), where 0 is the leftmost column

If B = 4, return the current position of the cursor.

If B = 5, move a 1920-byte block of data to video memory.
HL = pointer to 192QJ-byte buffer to move to video memory

If B = 6, move a 1920-byte block of data from video memory to a
buffer you supply. In 40 line by 24 character mode, there must
be a character in each alternating byte for proper display.

H L = pointer to 1920-byte buffer to store copy of video memory H L
must be in the range X'23FF' < HL < X'EC01. '

If B = 7, scroll protect the specified number of lines from the top of_the
screen.

C=number of lines to scroll protect (0-7) . Once set, scroll protect
can be removed only by executing @VDCTL with B = 7 and
C = 0, or by resett ing the system. Clearing the screen with
(SHIFTl(CLEARl erases the data in the scroll protect area, but the
scroll protect still exists.

If B = 8, change cursor character to specified character. If the cursor
is currently not displayed, the character is accepted anyway
and is used as the cursor character when it is turned back on.
The default cursor character is an underscore (X'5F') under
Version 6.2 and a X'B0' u,:ider previous versions.

C = character to use as the cursor character

If B = 9, (under Version 6.2 only) transfer 80 characters to or from
the screen.

If C = 0, move characters from the buffer to the screen
If C = 1 , move characters from the screen to the buffer
H = row on the screen
DE = pointer to BQJ byte buffer

Note: The video RAM area in the Models 4 and 4P is 2048 bytes (2K).
The first 1920 bytes can be displayed . The remaining bytes contain the
type-ahead buffer and other system buffers.

321

Exit Conditions:
If B= 1:

Success, Z flag set.
A= character found at the location specified by HL
DE is altered.

Failure, NZ flag set.
A= error number

If 8=2:
Success, Z flag set.

DE is altered.
Failure, NZ flag set.

A= error number

If 8=3:
Success, Z flag set.

DE and HL are altered.
Failure, NZ flag set.

A= error number

If 8=4:
Success always.

If 8=5:

HL = row and column position of the cursor. H = row on the
screen (0-23), where 0 is the top row; L = column on the

• screen (0-79), where 0 is the leftmost column.

Success always.

If 8=6:

HL = pointer to the last byte moved to the video + 1
BC and DE are altered.

Success always.
BC, DE, and HL are altered.

If 8=7:
Success always.

BC and DE are altered.

If 8=8:
Success always.

A= previous cursor character
DE is altered.

If B = 9 (under Version 6.2 only):
Success, Z flag set.

BC, HL, DE are altered.
Failure, NZ flag set because H is out of range.

A= error code 43 (X'2B') .

General:
Functions 5, 6, and 7 do not do range checking on the entry parameters.
If HL is not in the valid range in functions 5 and 6, the results may be

unpredictable.
Only function 3 (B = 3) moves the cursor.
If C is greater than 7 in function 7, it is treated as modulo 8.
AF and B are altered by this SVC.

Example:
See Sample Program F, lines 304-327.

322

fJ,J272
fliJ273
fJ,J274
fJ.0'275
,JfJ276
fJ.0'277
,JfJ278
.0'.0'279
,JfJ28.0'
.0'.0'281
.0'.0'282
.0'.0'283
.0'.0'284
.0'/J285
.0'.0'286
,JfJ287
,JfJ288
fJ/J289
fJ/J29.0'
fJ.0'291
fJ.0'292
fJ.0'293
.0'.0'294
fJ.0'295
fJ.0'296
.0'.0297
fJ.0'298
.0',0'299
fJ.0'3.0'.0'
.0'.03.0'1
fJ.0'3fJ2
.0'.03.0'3
.0'.0'3.0'4
.0'.0'3.0'5
fJ.0'3.0'6
.0'fJ3.0'7
.0'.03.0'8
.0'.0'3.0'9
.0'.0' 31.0'
fJ.0'311
.0',0'312
.0'.0313
fJ,0314
.0'.0'315
fJ.0'316
.0'.0317
.0'.0'318
.0'/J319
fJ.0'32,J
.0'.0321
.0'.0322
fJ.0'323

Sample Program B, continued

;These are the storage declarations.

BUF6:
BUF5
BUF4:
BUF3:
BUF2:
DIVRl:
DIVDl:
ANSl:
REMl:
MCANDl:
MIERl:
MCAND2:
DIVD2:
ANS2:

DEFS
DEFS
DEFS
DEFS
DEFS
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFW
DEFW
DEFW

;Below are messages and prompting text used in the program.

DEFB
MESSl: DEFM

DEFB
DEFB

MESS3: DEFM
DEFB
DEFB

MESS4: DEFM
DEFB
DEFB

MESS6: DEFM
DEFB
DEFB

MESS8: DEFM
DEFB
DEFB

MESS9: DEFM
DEFB
DEFB

MESSl,0': DEFM
DEFB
DEFB

MESSll: DEFM
DEFB
DEFB

MESS12: DEFM
DEFB

MESS13: DEFM
DEFB

MESS14: DEFM
DEFB

END

13
'Enter a number
3
21
'The answer is'

;Number of blanks to print after message 1
(1-255) • I

;Message-terminating character
;Number of blanks to print after message 3

3 ;Terminating character
18 ;Blanks after message
'The rema i nder is'
3 ;Terminating character
6 ;Blanks after message
'Enter a number (4369-65535) .'
3 ;Terminating character
15 ;Blanks after message
'Ente r a number 11-28).'
3 ;Terminating character
16 ;Blanks after message
'In hex ASCII, that is'
3 ;Terminating character
17 ;Blanks after message
' Enter a number 11-9).'
3 ;Terminating character
11 ;Blanks after message
'Enter a number 11-41.0'.0'> .'
3 ;Terminating character
15 ;Blanks after message
'Enter a number 11-15) .'
3 ;Terminating character
'The product of those 2 numbers is '
3 ;Terminating character
'Press <BREAK> to end or any other key to continue.'
.0'DH ;Terminating character

S"rART

343

Ln #

/J/J/Jf.H
/J/J/J/J2
/J/J/J/J3
/J fiJ/J/J 4
/J/J/J/J5
,, /J/J /J 6
/J/J/J/J8
ylyJfiJ/J9
ylyJ/Jl/J
ylfiJ/Jll
,Js;Js;Jl2
/J/J/Jl3
s;J/J/Jl4
yJ/J/Jl5
/J/J/Jl6
/J/J/Jl7
ylyJJ;Jl8
ylfiJJ;Jl 9
/J/J/J 2/J
ylfiJ/J21
/J/J/J22
/J/J/J23
fiJ/J/J24
/J/J/J25
ylfiJ/J2 6
/J/J/J27
ylfiJfiJ28
ylfiJ/J29
/J/J/J3fiJ
fiJ/J/J31
ylfiJ/J32
ylyJJ;J33
ylfiJ/J34
ylfiJ/J35
ylfiJ/J36
/J/J/J37
/J /J/J 3 8
ylfiJ/J39
ylyJfiJ4/J
/J/J/J41
ylyJyJ 42
/J/JfiJ43
ylyJ/J44
ylyJ/J45
/J/J/J46
/J/J/J 4 7
/J/J/J 4 8
/J/J/J49
fJ/J/J5/J
fj/J/J51
ylfiJ/J52
ylfiJ/J53
fj/J/J54
/J/J/J55
/J/J/J56
/J/J/J57
ylyJyJ58
/J/J/J5 9
/J /J/J 6 /J
/J/J/J61
/J/J/J6 2
/J/J/J63
/J/J/J6 4
/JfiJ/J65
/J /J/J 6 6
/J/J/J67

Sample Program C

Source Line

This program prompts for two filenames, opens the first
file, and creates the second. Then the data in the first
file is copied to the second file. While the Copy progresses,
the current record number is displayed in parentheses.

PSECT ;This program starts at x'3/J/JfiJ'

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes the program easier to follow.

@CLOSE: EQU
@DIRRD: EQU
@DSP: EQU
@DSPLY: EQU
@ERROR: EQU
@EXIT: EQU
@FEXT: EQU
@FNAME: EQU
@FSPEC: EQU
@HEXDEC:EQU
@INIT: EQU
@KBD: EQU
@KEYIN: EQU
@LOC: EQU
@OPEN: EQU
@READ: EQU
@REMOV: EQU
@VER: EQU

6/J
87
2
1/J
26
22
79
8/J
78
97
58
8
9
63
59
67
57
73

;Close a file or device
;Read a directory record
;Display character at cursor
;Display a message
;Display an error message
;Exit and return to TRSDOS or the caller
;Add a default file extension
;Fetch a filespec from the directory
;Verify and load a filespec into the FCB
;Convert a binary value to decimal ASCII
;Open an existing file or create a new file
;Scan the keyboard for a character
;Accept a line of text from the *KI device
;Return the current logical record number
;Open an existing file
;Read a record from an open file
;Delete a file from disk
;Write a record to disk. Does the same thing
;as @WRITE (Svc 75), but it also makes sure

. ;the written data is readable.

First, prompt for the source filespec using the @DSPLY svc.

BEGIN: LO
LO
RST

HL,MESGl
A,@DSPLY
28H

;Get the first message
;Display a line on the screen
;Call the @DSPLY SVC

Now, read the filename from the keyboard using the @KEYIN svc.

LO
LO
LO
LO
RST
JP
JP

LO
OR
JR

HL,FILEl
B,24
CI fJ
A,@KEYIN
28H
C,QUIT
NZ,ERR

A,B
A
Z,BEGIN

;Put the name of the 1st file here
;Allow up to 24 characters
;A zero is required by the svc
;Get a filename from the us-er
;Call the @KEYIN SVC
;The user pressed <Break>
;An Error pccurred

;Get the number of characters
;See if that value was zero
;Nothing was entered, ask again

The us·er has typed something, so it must be checked for validity
using the @FSPEC SVC.

LO
LO

LO

RST
JR

HL,FILEl
DE,FCBl

A,@FSPEC

28H
Z,ASK2

;Point at the text the user entered
;Point at the File Control Block
;that is to be used for the source file.
;The @FSPEC svc will make sure the filename
;that is in buffer named "filel" is valid.
;If it is, it is copied into the File
;Control Block (FCBl to be used by the @OPEN
;or @INIT SVC later on.
;Call the @FSPEC svc
;The name for file 1 is ok, so skip this

At this point the filename specified for file 1 has been found

344

,0,0339
,0,034/J
,0,0341
/J/J3 42
1313343
,013344
,0133 45
,0,03 46
,0,0347
,01J348
,01J349
,0,035/J
,013351
,0,0352
,0,0353
,0,0354
,0,0355
,0,0356
,0,0357
,0,0358
,0,0359
,0,036,0
,0,0361
,0,0362
,0,0363
,0,0364
,0,0365
,0,0366
,0,0367
,0,0368
,0,0369
,0,037,0
,0,0371
,0,0372
,0,0373
,0,0374
,0,0375
,0,0376
,0,0377
,0$078
,0,0379
,0,038,0
,0,0381
,0,0382
,0,038 3
,0,0384
,0,0385
,0,0386
,0,0387
,0,0388
,0,0389
,0,039,0
,0,0391
,0,0392
,0,0393
,0,0394
,0,0395
,0,0396
,0,0397
,0,0398
,0,0399
,0,04,0,0
,0,04,01
,0,0 4,0 2
,0,04,03
,0,04,04
,0,04,05

EOF:

EOFYES:

QUIT:

ERR:

SPACES:

ARR-OW:

OK:

MESGl:

MESG2:

FEXST:

LD
LD

RST
JR

JR

Sample Program C, continued

HL,BUFFER
A,@VER

28H
NZ,ERR

LOOP

;Point at the data read from file l
;Write a record to the target file
;The @VER does the same thing as the
;@WRITE SVC, only it also checks the
;data to make sure it is readable.
;Call the @VER SVC
;An error occurred on write; possibly
;the disk is full.
;Loop until an error occurs.

This code checks the error to make sure it was an end of file
condition and, if so, closes the source & target files.

CP
JR
CP
JR

28
Z,EOFYES
29
NZ,ERR

;Was it an end of file encountered?
;Yes, close the file
;Was it "Record number out of range"?
;No, must be some other error

It is possible to get Error 29 if the file being copied has
an EOF that is not a multiple of the file's LRL

LD
LD
RST
JR

LD
LD
RST
JR

LD
LD
RST

LD
RST

DE,FCBl
A,@CLOSE
28H
NZ,ERR

DE,FCB2
A,@CLOSE
28H
NZ,ERR

HL,OK
A,@DSPLY
28H

A,@EXIT
28H

;Point at file l (source file)
; Close the file
;Call the @CLOSE SVC
;An error occurred, abort

;Point at file 2 (target file)
;Close it also
;Call the @CLOSE svc
;An error occurred, abort

;Print a message saying the copy is done

;Call the @DSPLY SVC

;Exit to TRSDOS or the calling program
;Call the @EXIT SVC

The @EXIT svc does not return.

OR

LO
LO
RST

C,A
A,@ERROR
28H

;Turn on bit 6, which
;will cause the @ERROR svc to print
;the short error message. Bit 7
;is not set, which instructs the @ERROR
;to abort this program and return to
;TRSDOS Ready.
;Put error code & flags in register C
;Call the system error displayer
;Call the @ERROR svc

Because bit 7 is not set, the @ERROR svc will not return.

Storage Declaration

DEFM
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB

3
'=>
3
1,0%25
'[Ok]'
,0DH
'Copy Filespec
3
'To Filespec >'
3

;ASCII Space char.for display formatting

;Arrow for display shows data direction

;Advance cursor 1,0 spaces without erasing
;Used to indicate . the Copy is complete
;Terminated with an <Enter>

>'

'Destination File Already Exists - Ok to Delete it (Y/Nl ?'
3

349

.0'.0'4.0'6 BADFIL: DEFM
,0,04.0'7 DEFB
.0',04,08 LOCMSG: DEFM
.0'.0'4.0'9
.0'.0'41.0 DEFB
.0'.0'411 DEFB
.0'.0'412
.0'.0'413 FILEl: DEFS
.0'.0'414 FILE2: DEFS
.0'.0'415 FCBl: DEFS
.0'.0'416 FCB2: DEFS
.0'.0'417 COPY: DEFS
.0'.0'418 LRL: DEFB
.0'.0'419
.0'.0'42.0' BUFl: DEFS
.0'.0'421 BUF2: DEFS
.0'.0'422 BUFFER: DEFS
.0'.0'423
.0'.0'424 END

Sample Program C, continued

'Invalid Filename - Try Again'
,0DH
'12345)'

7%24
3

32
32
32
32
32
.0'

256
256
256

BEGIN

;This will be used in building the LOC
;Display will appear as (d) to (ddddd) .
;Backspace without erasing
;Etx, used to get the @DSPLY SVC to stop

;User Text Originally placed here
;Target Filename goes here
;32 bytes for the File Control Block
;32 bytes for the File Control Block
;An extra copy of the target FCB goes here
;The Logical Record Length of the source "
;file will be stored here
;System buffer for File 1
;System buffer for File 2
;Data buffer for both files

;"begin" is the starting address

350

,0,0313
,0,0314
,0,0315
,0,0316
,0,0317
,0,0318
,0,0319
,0,032,0
,0,0321
,0,0322
,0,0323
,0,0324
,0,0325
,0,0326
,0,0327
,0,0328
,0,0329

OR

RET
PUSH
PUSH
PUSH
LD
LD
RST
POP
POP
POP
INC
INC
JR

MOD END: END

Sample Program F, continued

A

z
HL
DE
BC
C,A
A, @VDCTL
28H
BC
DE
HL
L
DE
TSKLP

BEGIN

;Is it time to stop putting this on
;the display?
;Yes, return to the caller
;Save the registers, as the SVC will
;alter the contents

;Put the character here
;Put character on screen at specified position
;Call the @VDCTL SVC
;Restore registers

;Advance display position
;Point to next character to display
;Loop till date is completely displayed

;End of task and main program

359

f.HHHH
fl0002
n003
fl0004
00n5
n006
00007
fllHJ08
fl0f.Jf.J9
00f.Jl0
fl0011
nr.J12
fj{.Jfjl3
00014
fl0015
fl0016
nfll7
fl0018
fl0019
00f.J20
f.Jf.Jf.J21
flf.J022
n023
0f.J024
0f.Jf.J25
0f.J026
fl0027
00028
00029
0f.Jf.J3f.J
00031
0f.Jf.J32
fl0033
00034
00035
00036
f.J0037
00f.J38
00039
0004'1
fln41
fl0042
fl0fl43
0f.J044
00045
fl0046
fl0047
00048
0f.Jy149
00y15f.J
f.J0051
fl0052
00053
f.J0054
fl0055
00056
00057
f.J0058
fl0059
fl0060
00061
f.J0062
f.J0063
f.J0064
r.Jn65
00066
00067
00068

@EXIT:
@DSPLY:
@FLAGS:
@DODIR:
@KEYIN:
@CMNDI:

Sample Program G

This program is a sample Extended Command Interpreter. You
may make the ECI as large or small as you require. You may
use allof main memory, or you can restrict yourself to the
system overlay area (x'2600' to x'2FFF').
To pass a command to the normal system interpreter for
processing, use the @CMNDI svc. TRSDOS executes the command
and reloads the ECI. If you want to have multiple entry
points, Bits 2 - fl in EFLAG$ are in Register A on entry
(in Bits 6 - 4),or you may read EFLAG$ yourself.
EFLAG$ is totally dedicated to the ECI, and may contain any
non-zero value. If EFLAGS contains a zero, TRSDOS uses its
own interpreter. Other programs that want to activate an ECI,
should set the EFLAG$ to a non-zero value and execute a @EXIT
SVC.

To install an .EC!, use the command:
COPY filename SYS13/SYS.LSIDOS:d (C=N)

If you omit the C=N option, the SYS13 file loses it's "SYS"
status and you will receive 'Error 07' messages when you try
to use it as a ECI.

When SYSl (the normal command interpreter) has completed it's
normal housekeeping and is about to display the "TRSDOS Ready"
prompt, it checks EFLAG$. If EFLAG$ contains a non-zero
value, TRSDOS loads and executes the Extended Command
Interpreter.
To execute this program, type <*><Enter>.

This program checks EFLAG$ to see if it is zero. If so, it
sets it to a non-zero value. This causes this program to be
used instead of the normal interpreter when you execute an
@EXIT or @ABORT SVC. (@CMNDI and @CMNDR invoke the TRSDOS
interpreter.) If EFLAG$ is non-zero, the ECI displays a few
prompts and the names of all visible / CMD files on logical
Drive [.J.
The operator may then type the name of a program to execute.

If you press <Break> , this program sets EFLAG$ to 0, executes
an @EXIT SVC and returns to TRSDOS Ready.

By pressing a number, 0 through 7, you can specify the drive
that TRSDOS searches. This program stores this value in
EFLAG$. Each time this program is invoked, it reads the value
from EFLAG$ and uses that drive.

Note that if a drive is not enabled, not formatted, doesn't
exist, or contains no visible /CMD files, this program
redisplays the prompt.

PRINT'

PSECT

Declare
This is
follow.
EQU
EQU
EQU
EQU
EQU
EQU

SHORT,NOMAC

;This program starts at x'3000'

the equates for the SVCs used.
not mandatory, but it makes the program easier to

22
10
l[.Jl
34
9
24

;Exit and return to TRSDOS
;Display a string
;Locate the system flag area
;Get the names of filenames
;Accept a command and allow editing
;Execute a command (using SYSl)

On entry, determine if EFLAG$ is set to zero or not. If it
is set to zero, this program is being started by typing
PROGRAM<Enter> or <*><Enter>. In that case, set EFLAG$ to a
non-zero value so that in future, TRSDOS uses this interpreter
instead of it's own.

360

n/J69
n1J11J
.0/J/J71
n1J12
area
.0/J/J7 3
n1J14
.0/J/J75
.0/J/J76
.0/J/J77
nrJ78
n1J19
.0n0.0
n1J01
.0/J/J82
.0n03
,1,1/J84
fj/J/J85
/J/J/J86
.0.0/J87
n.000
,1,1{J89
.0/J/J9 .0
.0.0/J9 l
.0/J/J92
,1,1,193
.0/J,194
.0.0/J95
.0/J,196
.0/J/J9 7
.0/J,198
n,199
.0/Jl.0.0
,1,11,11
,0,11,12
fJ ,11,13
.0 /Jl,14
nus
,1,11,16
.0/JU 7
.0/Jl,18
.0,11,19
.0/Jll/J
n111
,1,1112
.0/Jll 3
.0,1114
,1,1115
,1,1116
,1,1117
,0,1118
.0,1119
.0/Jl 2.0
.0.0121
.0.0122
,1,1123
.0.012 4
.0/Jl 2 5
.00'126
0' 0'12 7
,1,1128
.00'12 9
.0.013 fJ
.0,1131
.00'13 2
.0.0133
,1,1134
0'0'135
.00'13 6

BEGIN:

Sample Program G, continued
If EFLAG$ is non-zero, this initialization has already bee n
done and can be skipped.

LO A,@FLAGS ;Get the starting address of the fla g

RST 28H ;Call the @FLAGS SVC

LO A, (IY+4) ;Read the EFLAG$ (ECI flag)
OR A ;Is it set to zero?
JR NZ,ECIRUN ;Run the ECI

LO A,8 ;Get a non-zero value. The value
;needs to be a non - zero value that
;does not s e t Bits .0, 1 or 2. The
;default drive # is kept in these bits.

LO (IY+4) ,A ;Set the EFLAG$ to a non-zero value
LO HL,PROMPT ;Explain how this works
JR ECIGO ;Display message

When the system is about to display
TRSDOS Ready, it executes this code instead.

ECIRUN: LO
ECIGO: LO

RST

HL,SPROMPT
A,@DSPLY
28H

;Point at the prompt to use
;Display the prompt
;Call the @DSPLY svc

ASK:

Display the names of all / CMD files

LO
AND
LO
LO
LO
LO
RST

A,(IY+4)
7
C,A
A,@DODIR
B, 2
HL,CMDTXT
28H

;Get the EFLAG$
;Delete all but the drive number field
;Store the drive number for the svc
;Do a directory display
;Display visible, non-system files
;that match "CMD" (stored at CMDTXT)
;Call the @DODIR SVC

Prompt for a filename or a function key.

LO HL,BUFFER
LO B,9
LO C, .0
LO A,@KEYIN
RST 28H

JR C,QUIT

LO HL,BUFFER
LO A, (HL)

CP ,0DH
JR Z,ASK

SUB I 0' I

CP 7+1
JR NC,NAME

;Point at text buffer
;Allow up to 8 characters and <Ente r >
;Required by the svc
;Input text with edit capability
;Call the @KEYIN SVC

;The carry flag is set wh e n the
;operator presses <BREAK > . Zero the
;EFLAG$ and exit to TRSDOS

;Point at the start of the buffe r
;Get the character

;Did they type anything?
;No, just repeat the prompt .
;If you want to redisplay the
;directory, change "ASK" to "ECIRUN" .

;Convert value to binary
;Is the character a .0 - 7?
;Must be a filename

The operator has typed 1 or more characters that start with
a number. This program assumes that the operator is defining
a new drive number and stores this value in EFLAG$ for
future use. TRSDOS does not alter this value.
The next time this program is run, EFLAG$ contains the
same value and this program knows what drive to scan .

LO
LO

B,A
A, (IY+4)

;Save the drive number
;Get the EFLAG$

360.1

,0,0137
,0,0138
,0,0139
,0,01 4,0
,0,0141
,0,0142
,0,0143
,0,0144
,0,0145
,0,0146
,0,0147
,0,0148
,0,014 9
,0,015,0
,0,0151
,0,0152
,0,0153
,0,015 4
,0,0155
,0,0156
,0,0157
,0,0158
,0,015 9
,0,016,0
,0,0161
,0,0162
,0,0163
,0,016 4·
EFLAG$.
,0,0165
,0,0166
,0,0167
,0,0168
,0,0169
,0,017,0
0',01 71
,0,0172
,0,0173
,0,0174
,0,0175
,0,0176
,0,0177
,0,0178
,0,0179
,0,0179
,0,018,0
,0,0181
,0,018 2
,0,018 3
,0,0184
,0,0185
,0,0186
,0,0187
,0,0188
,0,0189
,0,019,0
,0,0191

,0,0192
,0,0193

,0,0194
,0,0195
,0,0196
,0,0197

,0,0198
,0,0199
,0,02,0,0

;
QUIT:

NAME:
FDIV:

FOUND:

Sample Program G, continued
AND
OR
LD
JR

8
B
(IY+4),A
ECIRUN

The operator pressed
TRSDOS.
XOR
LD
LD
LD
RST

A
(IY+4) ,A
HL,EPROMPT
A,@DSPLY
28H

LD A,@EXIT
RST 28H

; Delete the old drive number
; Insert the new drive number
;Save that value for future use
;Scan the new drive

<Break>. Turn off the ECI and return to

;Get a zero
;Set EFLAG$ to zero
;Point at the shutdown message
;And acknowledge the <Break>
;Call the @DSPLY svc
;Return to TRSDOS Ready
;Call the @EXIT SVC

The operator entered what might be a filename or a library
command. Pass it to TRSDOS for processing. If there is an
error, TRSDOS is responsible for determining what the error is
and printing a message.
(HL already points at the start of the buffer.)

LD
CP
JR
INC
JR

A, ,0DH
(HL)
Z,FOUND
HL
FDIV

;Look for this character
;In the command
;Found the end of the filename
;Move character to next byte
;Find the divider (in this case, a ,0DH)

Found the end of a filename, and add the drive number from

Note that this program may not work properly if the operator
supplies a drive number as part of the filename.

LD (HL), I : I

INC HL
LD A, (IY+4)
AND 7
ADD A, I ,0 I

LD (HL), A
INC HL
LD (HL), ,0DH
LD HL, BUFFER
LD A,@CMNDI

RST 28H

;Add a drive number to the filename
;Advance the pointer to the next byte
;Get the EFLAG$ value
;Delete all but the drive number
;Convert the binary value to ASCII
;Add that to the filename
;Advance the pointer to the next byte
;Write a terminator on the end
;Point at the text entered
;Execute the command, but do not
;return . Since this program is the
command processor at this time,TRSDOS
;returns control to the beginning of
;this module after executing the
;command.
;Call the @CMNDI SVC

Messages and text storage

PROMPT: DEFM
DEFB
DEFB
DEFM
DEFB
DEFM

'[Extended Command Interpreter Is Now Operational]'
,0AH
,0AH
'Press <BREAK> to use the normal interpreter,'
,0AH
' type <Number><ENTER> to change the default drive
number,'

DEFB
DEFM

DEFB

SPROMPT:DEFB
DEFM

DEFM
DEFB

,0AH
'or type the name of the program to run and press
<ENTER>'
,0DH ;Terminate the display

,0AH
'[ECI On] <BREAK> to abort, n<ENTER> for new drive or
type : I

'program<ENTER>'
,0DH ;Terminate the message

360.2

~~2~1 EPROMPT:DEFM
~~2~2 DEFB
n2~3
~~2~4 CMDTXT: DEFM
~~2~5 BUFFER: DEFS
n2~6
~~2~7 END

Sample Program G, continued
' [Extended Command Interpreter . Is Now Disabled l '
~DH

'CMD'
11

BEGIN

;Allow for filename, drivespec and ~DH

;"BEGIN" is the starting address

360.3

HIT read error (Error 22, X'16')

A disk error occurred during the reading of the Hash Index Table. The problem
may be media, hardware, or program failure. Move the diskette to another drive
and try the operation again .

HIT write error (Error 23, X'17')

A disk error occurred during the writing of the Hash Index Table. The HIT may
no longer be reliable. If the problem recurs, use a different drive or different
diskette.

Illegal access attempted to protected file (Error 37, X'25')

The USER password was given for access to a file, but the requested access
required the OWNER password. (See the ATTRIB library command in your
Disk System Owner's Manual.)

Illegal drive number (Error 32, X'20')

The specified disk drive is not included in your system or is not ready for access
(no diskette, non-TRSDOS diskette, drive door open, and so on). See the
DEVICE command in your Disk System Owner's Manual.)

Illegal file name (Error 19, X'13')

The specified filespec does not meet TRSDOS filespec requirements. See your
Disk System Owner's Manual for proper filespec syntax.

Illegal logical file number (Error 16, X'10')

A bad Directory Entry Code (DEC) was found in the File Control Block (FCB).
This usually indicates that your program has altered the FCB improperly. Check
for an error in your application program.

Load file format error (Error 34, X'22')

An attempt was made to load a file that cannot be loaded by the system loader.
The file was probably a data file or a BASIC program file.

Lost data during read (Error 3, X'03')

During a sector read, the CPU did not accept a byte from the Floppy Disk Con
troller (FDC) data register in the time allotted. The byte was lost. This may indi
cate a hardware problem with the drive. Move the diskette to another drive and
try again. If the error recurs, try another diskette.

Lost data during write (Error 11, X'0B')

During a sector write, the CPU did not transfer a byte to the Floppy Disk Con
troller (FDC) in the time allotted. The byte was lost; it was not transferred to the
disk. This may indicate a hardware problem with the drive. Move the diskette to
another drive and try again. If the error recurs, try another diskette.

LAL open fault (Error 42, X'2A')

The logical record length specified when the file was opened is different than
the LRL used when the file was created . COPY the file to another file that has
the specified LRL.

No device space available (Error 33, X'21')

You tried to SET a driver or filter and all of the Device Control Blocks were in
use. Use the DEVICE command to see if any non-system devices can be
removed to provide more space. This error also occurs on a "global" request to
initialize a new file (that is, no drive was specified), if no file can be created.

No directory space available (Error 26, X'1 A')

You tried to open a new file and no space was left in the directory. Use a differ
ent disk or REMOVE some files that you no longer need.

367

No error (Error 0)

The @ERROR supervisor call was called without any error condition being
detected. A return code of zero indicates no error. Check for an error in your
application program.

Parameter error (Error 44,X'2C')

(Under Version 6.2 only) An error occurred while executing a command line or
utility because a parameter that does not exist was specified. Check the spell
ing of the parameter name, value , or abbreviation.

Parity error during header read (Error 1, X'01')

During a sector 1/0 request, the system could not read the sector header suc
cessfully. If this error occurs repeatedly, the problem is probably media or hard
ware failure. Try the operation again, using a different drive or diskette.

Parity error during header write (Error 9, X'09')

During a sector write, the system could not write the sector header satisfactor
ily. If this error occurs repeatedly, the problem is probably media or hardware
failure. Try the operation again, using a different drive or diskette.

Parity error during read (Error 4, X'04')

An error occurred during a sector read. Its probable cause is media failure or a
dirty or faulty disk drive. Try the operation again, using a different drive or
diskette.

Parity error during write (Error 12, X'0C')

An error occurred during a sector write operation. Its probable cause is media
failure or a dirty or faulty disk drive. Try the operation again , using a different
drive or diskette.

Program not found (Error 31, X'1 F')

The file cannot be loaded because it is not in the directory. Either the filespec
was misspelled or the disk that contains the file was not loaded.

Protected system device (Error 40, X'28')

You cannot REMOVE any of the following devices: *Kl , *DO, *PR, * JL, *SI , *SO.
If you try, you get this error message.

Record number out of range (Error 29, X'1 D')

A request to read a record within a random access file (see the @POSN super
visor call) provided a record number that was beyond the 'end of the file. Correct
the record number or try again using another copy of the file.

Seek error during read (Error 2, X'02')

During a read sector disk 1/0 request, the cylinder that should contain the sec
tor was not found within the time allotted. (The time is set by the step rate spec
ified in the Drive Code Table.) Either the cylinder is not formatted or it is no
longer readable, or the step rate is too low for the hardware to respond. You can
set an appropriate step rate using the SYSTEM library command. The problem
may also be caused by media or hardware failure. In this case, try the operation
again, using a different drive or diskette.

Seek error during write (Error 10, X'0A')

During a sector write, the cylinder that should contain the sector was not found
within the time allotted. (The time is set by the step rate specified in the Drive
Code Table.) Either the cylinder is not formatted or it is no longer readable, or
the step rate is too low for the hardware to respond. You can set an appropriate
step rate using the SYSTEM library command . The problem may also be
caused by media or hardware failure. In this case, try the operation again, using
a different drive or diskette.

368

- Unknown error code

The @ERROR supervisor call was called with an error number that is not
defined. Check for an error in your application program.

Write fault on disk drive (Error 14, X'0E')

An error occurred during a write operation. This probably indicates a hardware
problem. Try a different diskette or drive. If the problem continues, contact a
Radio Shack Service Center.

Write protected disk (Error 15, X'0F')

You tried to write to a drive that has a write-protected diskette or is software
write-protected. Remove the write-protect tab, if the diskette has one. If it does
not, use the DEVICE command to see if the drive is set as write protected. If it
is, you can use the SYSTEM library command with the (WP= OFF) parameter
to write enable the drive. If the problem recurs, use a different drive or different
diskette.

Numerical List of Error Messages
Decimal Hex

0 X'00'
1 X'01 '
2 X'02'
3 X'03'
4 X'04'
5 X'05'
6 X'06'
7 X'07'
8 X'08'
9 X'09'

10 X'0A'
11 X'0B'
12 X'0C'
13 X'0D'
14 X'0E'
15 X'0F'
16 X'10'
17 X'11'
18 X'12'
19 X'13'
20 X'14'
21 X'15'
22 X'16'
23 X'17'
24 X'18'
25 X'19'
26 X'1A'
27 X'1 B'
28 X'1C'
29 X'1 D'
30 X'1 E'
31 X'1 F'
32 X'20'
33 X'21 '
34 X'22'
37 X'25'
38 X'26'
39 X'27'
40 X'28'

Message

No Error
Parity error during header read
Seek error during read
Lost data during read
Parity error during read
Data record not found during read
Attempted to read system data record
Attempted to read locked/deleted data record
Device not available
Parity error during header write
Seek error during write
Lost data during write
Parity error during write
Data record not found during write
Write fault on disk drive
Write protected disk
Illegal logical file number
Directory read error
Directory write error
Illegal file name
GAT read error
GAT write error
HIT read error
HIT write error
File not in directory
File access denied
Full or write protected disk
Disk space full
End of file encountered
Record number out of. range
Directory Full-can't extend file
Program not found
Illegal drive number
No device space available
Load file format error
Illegal access attempted to protected file
File not open
Device in use
Protected system device

369

41
42
43
63

X'29'
X'2A'
X'2B'
X'3F'

File already open
LRL open fault
SVC parameter error
Extended error
Unknown error code

370

Appendix D/Keyboard Code Map

The keyboard code map shows the code that TRSDOS returns for each key, in
each of the modes: control, shift, unshift, clear and control, clear and shift, clear
and unshift.

For example, pressing (CLEAR), (SHIFT), and (I) at the same time returns the code
X'At

A program executing under TRSDOS - for example, BASIC - may translate
some of these codes into other values. Consult the program's documentation
for details.

(BREAK) Key Handling
The (BREAK) key (X'80') is handled in different ways, depending on the settings
of three system functions. The table below shows what happens for each com
bination of settings.

Break Break
Enabled Vector

Set
y N

y N

y y

y y

N X

Type
Ahead

Enabled
y

N

y

N

X

If characters are in the type-ahead buffer,
then the buffer is emptied.*

If the type-ahead buffer is empty, then a
BREAK character (X'80') is placed in the
buffer.*

A BREAK character (X'80') is placed in the
buffer.

The type-ahead buffer is emptied of its con
tents (if any) , and control is transferred to the
address in the BREAK vector (see @BREAK
SVC) .*

Control is transferred to the address in the
BREAK vector (see @BREAK SVC).

No action is taken and characters in the type
ahead buffer are not affected.

*Because the (BREAK) key is checked for more frequently than other keys on the
keyboard, it is possible for (BREAK) to be pressed after another key on the key
board and yet be detected first.

Y means that the function is on or enabled
N means that the function is off or disabled
X means that the state of the function has no effect

-Break is enabled with the SYSTEM (BREAK = ON) command (this is the
default condition).

The break vector is set using the @BREAK SVC (normally off) .
Type-ahead is enabled using the SYSTEM (TYPE= ON) command (this is the

default condition).

383

31 B2 32 B3 33 B4 34 BS 35 BG 36 B7 ' ., / BS 38 BS 39 B0 30 BA tt AD 2D 80 ab- J

!
,,

$ % &
,

() * = B
A1 1 21 A2 2 22 Al 3 23 A4 4 24 AS 5 25 AG 6 26 A7 7 27 AS 8 28 AS 9 29 A0 0 t AA 2A BD - 3D 80 R ttt
B1 31 B2 32 B3 33 B4 34 BS 35 BG 36 B7 37 BS 38 BS 39 B0 30 BA 3A AD 2D 80 K s0

SB 0B 91 11 97 17 85 05 92 12 94 14 99 19 95 15 89 09 BF 0F 90 10 0 0 88 08 89 09

SB t 1B F1 Q 51 F7 w 57 ES E
45 F2 R 52 F4 T 54 F9 V 59 F5 u 55 ES I 49 EF O 4F FG

p
50 EIJ@ 60 98 ~ 18 99 ➔ 19

SB 0B D1 71 D7 77 cs 65 D2 72 D4 74 D9 79 D5 75 C9 69 CF GF D0 70 C0 40 88 08 89 09

SA 0A 81 01 93 13 84 04 86 06 87 07 88 (118 SA 0A SB GB SC 0C 1E 1E SD 0D C

s + ENTER
L

+ A D F E7 G H EA J K L E 1F
SA 1A E1 41 F3 53 E4 44 EG 46 47 ES 48 4A EB 4B EC 4C 7E ,
SA 0A C1 61 D3 73 C4 64 CG 66 C7 67 cs 68 CA GA CB GB cc 6C SE

SA 1A 98 18 83 03 96 16 82 02 SE GE SD GD 1B 1B 1D 1D 1C

SHIFT FA z 5A FS X
58 E3 C 43 FG V 56 E2 B 42 EE N 4E ED M 4D 7B ~ 3C 7D > 3E 7C

DA 7A DS 78 C3 63 DG 76 C2 62 CE GE CD GD 5B 2C 5D 2E SC
00

C A0
T A0

20
R
L AG 20

The keys may be positioned differently on your keyboard. However, they produce the same codes.

LEGEND:

Clear and Control • • Control

Clear and Left Shift • • Shift
Clear and Unshift • • Unshift_ __ __,

Note: Pressing CONTROL, SHIFT, and
@ at the same time generates an
EOF (end of file) - - X'1 C'
with NZ return flag.

Whenever pressing CLEAR,
SH I FT, and another key at the
same time, be sure to use the
left SHIFT key - not the right
SHIFT key.

t Pressing SHI FT and 0 at the same
time (or CAPS alone) turns the
CAPS mode on or off.

tt Pressing CONTROL and : at the
same time causes a screen print.

ttt Pressing SHIFT and BREAK at
the same t ime reselects the last
drive .

Codes for these keys
are the same as for
the ma in keyboard .

2B 7F 1D A
3B SF 01;) R

1C
? SHIFT I 3F

2F

C
A
p
s

81 81 82 82 83 83

91 F1 91 s2 F2 92 93 F3 93
81 81 82 82 83 83

7 8 9

4 5 6

1 2 3

(/J • ENT

s;t
co
C")

Appendix E/Programmable SVCs
(Under Version 6.2 only)

SVC numbers 124 through 127 are reserved for programmer installable SVCs.
To install an SVC the programmer must write the routine to execute when the
SVC is called.

The routine should be written as high memory module if it is to be available at
all times. If you execute a SYSGEN command when a programmable SVC is
defined, the address of the routine is saved in the SYSGEN file and restored
each time the system is configured. If the routine is a high memory module, the
routine is saved and restored as wel l. This makes the SVC always available.
For more information on high memory modules, see Memory Header and Sam
ple Program F.

To install an SVC, the program must access the SVC table. The SVC table con
tains 128 two-byte positions, a two-byte position for each usable SVC. Each po
sition in the table contains the address of the routine to execute when the SVC
is called.

To access the SVC table, execute the @FLAGS SVC (SVC 101). IV+ 26 con
tains the MSB of the SVC table start address. The LSB of the SVC table ad
dress is always 0 because the SVC table always begins on a page boundary.

Store the address of the routine to be executed at the SVC number times 2 byte
in the table. For example, if you are installing SVC 126, store the address of the
routine at byte 252 in the table. Addresses are stored in LSB-MSB format.

When the SVC is executed, control is transferred to the address in the table. On
entry to your SVC, Register A contains the same value as Register C. Al l other
registers retain the values they had when the RST 28 SVC instructi_on was
executed.

To exit the SVC, execute a RET instruction. The program should save and re
store any registers used by the SVC.

Initially, SVCs 124 through 127 display an error message when they are exe
cuted. When installing an SVC you should save the original address at that lo
cation in the table and restore it when you remove the SVC.

These program lines insert a new SVC into the system SVC table, save the pre
vious value of the table , and reinsert that value before execution ends. You
could check the existing value to see if the address is above X'2600'. If it is, the
SVC is already assigned and should not be used at this time.

This code inserts SVC 126, called MYSVC:

LO A, @FLAGS ;Locate start of SVC table
RST 28H ;Execute @FLAGS SVC
LO H,(IY + 26) ;Get MSB of address
LO L, 126*2 ;Want to use SVC 126
LO (OSVC126A),HL ;Save address of SVC entry
LO E,(HL} ;Get current SVC address
INC HL
LO D,(HL)
LO (OSVC126V),DE ;Save the old value
DEC HL
LO DE,MYSVC ;Get address of routine for

;SVC 126
LO (HL),E ;Insert new SVC address into

;table
INC HL

385

LD (HL),D

. Code that uses MYSVC (SVC 126)

This code removes SVC 126:

LD
LD
LD
INC
LD

HL,(OSVC126A)
DE,(OSVC126V)
(HL),E
HL
(HL),D

386

;Get address of SVC entry
;Get original value
;Insert original SVC address

Appendix F/Using SYS13/SYS
{Under Version 6.2 only)

With TRSDOS Version 6.2, you can create an Extended Command Inter
preter (ECI) or an Immediate Execution Program (IEP) . TRSDOS can store
either an ECI or IEP in the SYS13 file . Both programs cannot be present at
the same time.

At the TRSDOS Ready prompt when you type GJ (ENTER), TRSDOS exe
cutes the program stored in SYS13/SYS. Because TRSDOS recognizes the
program as a system file, TRSDOS includes the file when creating backups
and loads the program faster.

If you want to write additional commands for TRSDOS, you can write an in
terpreter to execute these commands. Your ECI can also execute TRSDOS
commands by using the @CMNDI SVC to pass a command to the
TRSDOS interpreter.

If EFLAG$ contains a non-zero value , TRSDOS executes the program in
SYS13/SYS. If EFLAG$ contains a zero , TRSDOS uses its own command
interpreter.

Sample Program G is an example of an ECI . It is important to note that your ECI
must be executable by pressing GJ (ENTER) at the TRSDOS Ready prompt.

An ECI can use all of memory or you can restrict it to use the system overlay
area (X'2600' to X'2FFF') .

To implement an IEP or ECI, use the following syntax:

COPY filespec SYS13/SYS.LSIDOS:drive (C = N) (ENTER)

filespec can be any executable (/CMD) program file . drive specifies the desti
nation drive. The destination drive must contain an original SYS13/SYS file .

Example

COPY SCRIPSIT/CMD:1 SYS13/SYS.LDl :0 (C = N)

TRSDOS copies SCRIPSIT/CMD from Drive 1 to SYS13/SYS in Drive 0. At the
TRSDOS Ready prompt, when you press Cu (ENTER), TRSDOS executes
SCRIPSIT.

387

388

Index
Subject Page Subject Page

@ABORT 230
Access

device . 191-192
drive . 193-203
file 186

Address decoding . 15
Adjustment, drive motor 93
Adjustments, FDC . 61
@ADTSK 231
Alien disk controller 194
Alignment, disk drive 93
Allocation

dynamic . 185
information 194, 207
methods of . 185
pre- 185
unit of 184

ASCII codes 374-376
Background tasks, invoking 215-216
@BANK 219-221 , 232-233
Bank switching 218-221
Baud 15, 21
Baud rate generator 169
@BKSP 234
BOOT/SYS 187
BREAK

detection 211-214, 235
key handling . 383

@BREAK 235
Buffering . 15, 59, 69
Byte 1/0 . 222-224
Carriage movement . 93
CASIN* 29
CASOUT* 28
Cassette circuitry . 21
Cat eyes adjustment 94
Characters

ASCII 374-376
codes 373-382
graphics 377-378, 380
special 378-379, 381-382

@CHNIO 236
@CKDRV 237
@CKBRKC . 236.1
@CKEOF 238
@CKTSK 239
Cleaning the magnetic head 93
Clock generation 60, 70
Clock rate , changing 363
@CLOSE 240

389

@CLS 240.1
@CMNDI 241
@CMNDR 242
Codes

ASCII 374-376
character . 373-382
error 369
graphics 377-378, 380
keyboard . 383-384
return 210
special character 378-379, 381-382

Compensated write data 88
Compliance check . 96
Control chain . 132
Controller, CRT . 19
Controller, floppy disk 9
Converting to TRSDOS Version 6 . . 209-21 O
CPU board 9, 10, 11 , 15
CREATEd files 197
Crowbar . 113, 124
CRT 10, 11
@CTL 222-224, 243-244

interfacing to device drivers . . . 224-226
Current limit circuit . 130
Cylinder

highest numbered 194
number of . 200
position, current 194
starting . 207

@DATE 245
@DCINIT 246
@DCRES 247
@DCSTAT 248
DEBUG 188
@DEBUG 249
@DECHEX . 250
Decoding, address . 15
Density, double and single 183, 193, 200
Device

access 191-192
handling . 209
NIL 191

Device Control Block (DCB) 191
Device driver 189, 190, 195

address 191
COM . 225-226
@CTL interfacing to 224-226
keyboard . 225
printer . 225
templates 222-224

Index
Subject Page Subject Page

video 225
Devspec 191
Directory

location on disk 184, 194
primary and extended entries 196,

198,202
record, locating a 202
records (DIREC) 195-198
sectors, number of 196

Directory Entry Code (DEC) 200-201,
202,206

@DIRRD 251
DIR/SYS . 187
@DIRWR 252
Disk drive 9, 10, 11, 81
Disk, diskette . 81

controller . 194
double-sided 193-194, 199, 200
files . 185-186
floppy 183
formatting 199, 200
hard 184
1/0 table . 195
minimum configuration 189-190
name 200
organization 183-184
single-sided 193-194, 199, 200
space, available 184

@DIVS 253
@DIV16 254
@DODIR 255-256
Drive

access 193-204
address 194
floppy . 183, 193
hard . 184, 193
size 193

Drive Code Table OCT 193-195
Drive motor adjustment 93
Drive select . 59, 70, 88
Driver - see Device driver
DRVSEL* 29
@DSP 257
@DSPLY 258
Duty cycle . 127
End of File (EOF) . 197
Ending Record Number (ERN) 198, 207
ENTER detection 211-214
Environmental specs, power supply 124
Erase gaps . 85

Error
codes and messages 365-369
dictionary . 188

@ERROR 259
@EXIT 260
Extended Command Interpreter 262, 387
External disk drive 81
FDC controller 9, 10, 11, 59,

61, 69, 72
Feedback control , power supply 109
@FEXT 261
File

access 186
descriptions, TRSDOS 187-190
modification . 197

File Control Block (FCB) 205
Files

CREATEd . 197
device driver . 189
filter 189
system (/SYS) . . . 187-188, 189-190, 201
utility . 189

Filter templates 222-224
Filters 189, 190, 222-224

example of . 224
@FLAGS 210, 262-263
Floppy disk data separator 72
Flyback converter . 121
@FNAME 264
@FSPEC 265
Fusing, power supply 109, 112
@GET 222-224, 266
Gran, granule

allocation information 207
definition 184, 199
per track 183-184, 194

Granule Allocation Table (GAT)
location on disk 184
contents of 198-200

Graphics
characters, printing 362
codes 377-378, 380

@GTDCB 267
@GTDCT 268
@GTMOD 269
Guidelines, programming 209-226
Hash code . 197, 200
Hash Index Table (HIT)

I location ?n disk 184
explanation of 200-201

390

Index
Subject Page Subject Page
@HDFMT 270
Head amplitude . 96
Head, disk drive . 93
Head positioning . 84
@HEXDEC . 271
@HEX8 272
@HEX16 273
@HIGH$ 274
Hold-Up time, power supply 124
Horizontal linearity . 146
@ICNFG, interfacing to 214-215
1/0 bus 26
Immediate Execution Program 387
Index pulse 84, 90
Index sector timing 95
Index sensor 81, 84
@INIT 275
Initialization configuration

vector . 214-215
Input line terminator 91
Interrupt tasks 216·-218
Interrupts . 59, 69, 170
@IPL 276
Job Control Language (JCL) 188, 21 O
Jumper options . 5
@KBD 277
@KEY 278
Keyboard 19
Keyboard codes 383-384
@KEVIN 279
KFLAG$ 211
Kick start latch . 125
@KITSK, interfacing to 215-216
@KLTSK 280
Library commands . 21 O

technical information on 361-363
@LOAD 281
Load board values, power supply 114
@LOC 282
@LOF 283
LOG utility 362
@LOGER 284
Logic board, disk drive 91
Logical Record Length (LRL) 197, 206
@LOGOT 285
Low voltage outputs 113, 130
Memory address decoding 18
Memory banks - see RAM banks
Memory header 192, 209
Memory map . 18, 371

391

Minimum configuration disk 189
Modification date . 197
MODOUT 28
Motor adjustment, disk drive 93
@MSG 286
@MUL8 287
@MUL 16 288
Next Record Number (NRN) 206
NIL device . 191
NMI logic 59, 69
@OPEN 289
Oscillator . 15
Overlays, system 187-188, 201
Over-Current protection 124
Over-Voltage protection 109, 124, 131
PAL circuits . 15
@PARAM 290-291
Password

for TRSDOS files 190
protection levels 196, 206

@PAUSE 292
PAUSE detection 211-214
@PEOF 293
Port address decoding 15
Port bit map 18, 28, 171
@POSN 294
Power supplies 9, 10, 11,

109, 112, 121
Precompensation, write 60
Preventive maintenance 93
@PRINT 295
Printer status 21
Printing Graphics Characters 362
Programming Guidelines 209-226
Protection Levels 196, 206, 209
@PRT 296
@PUT . 222-224, 297
Radial Alignment, Head 94
RAM 19, 20
RAM Banks

switching 218-221
use of . 232-233

@RAMDIR 2998
@RDHDR 299
RDINSTATUS* . 28
RDNMISTATUS* . 28
@RDSEC 300
@RDSSC 301
@RDTRK 302
@READ 303

Index
Subject Page Subject Page

Read Data Pulse 86, 90
Real Time Clock . 21
Record

length 185-186, 197, 206
logical and physical 185-186
numbers 186
processing . 186
spanning . 185-186

Rectifier . 113
@REMOV 304
@RENAM 305
Resistor Termination 83
Restart Vectors (RSTs) 211
Return Code (RC) . 210
@REW 306
. RFI Shield . 9
Ripple Specifications 114, 124
@RMTSK 307
ROM 19
@RPTSK 308
@RREAD 309
RS-232

initializing . 214
COM driver for 225-226

RS-232 Board 9, 11, 169
@RSLCT 310
@ASTOR 311
@RUN 312
@RWRIT 313
Sample Programs 336-359

A 337-338
B 339-343
C 344-350
D 351-352
E 353
F 354-359

Sectors
per cylinder 196, 201
per granule 183-184, 194

@SEEK 314
@SEEKSC 315
@SKIP 316
@SLCT 317
Snubber Circuit . 129
@SOUND 318
Sound Option 22
Special Character Codes . 378-379, 381-382
Spindle Drive . 84
Stack handling . 21 O
Step rate . 193

392

changing 361
@STEPI 319
Stepper motor . 81
Supervisor calls (SVCs)

calling procedure 227
lists of 228-229, 331-333, 334-335
program entry and

return conditions 227
sample programs using 336-359
using . 227-359

Surge limiter . 124
SYS files 187-188, 189-190, 201
System

files 187-188, 189-190, 201
overlays 187-188, 201

Task
interrupt level, adding 231
slots 216, 217, 231

Task Control Block (TCB) 216, 217, 231
Vector Table (TCBVT) 216, 217

Task processor, interfacing to 216-218
@TIME 320
Timing, CPU . 15
Track 00 Alignment . 95
Track 00 Switch 84, 90
Trim erase 86
TRSDOS

converting to Version 6 209-21 O
error messages and codes 365-369
file descriptions 187-190
technical information on

commands and utilities 361-363
TYPE code . 205
Under-Voltage Lockout 130
@VDCTL 321-322
@VER 323
Version, operating system 199
Video Controller . 19
Video Monitor 1 O, 145
Visibility 196
Voltage Controlled Oscillator 60
Voltage Regulation 124
@VRSEC 324
Wait State 60, 69
WAIT value, changing 362
@WEOF 325
@WHERE 326
WRINTMASKREG* . 29
@WRITE 327
Write Enable . 86

Index
Subject Page Subject Page

Write Gate . 88 @WRSEC 328
Write Precompensation 60, 69, 70 @WRSSC 329
Write Protect 84, 90, 95, 193 @WRTRK 330
WRNMIMASKREG* 28

393

