

Replacement Pages
for
Model 4 Technical Reference Manual

Attached are replacement pages for the Model 4 Technical Reference Manual
to update the Software Section to TRSDOS 6.2.

If your Model 4 Technical Reference Manual has already been updated, it will
have the following note on the copyright page:

Software Section updated to TRSDOS 6.2

If your manual has this note, you do not need the replacement pages. If it
does not, insert the pages into your manual.

If you have not purchased a Model 4 Technical Reference Manual, but may in
the future, keep these pages.

You may purchase the Model 4 Technical Reference Manual through your Ra-
dio Shack dealer.

Thank You

Radio fhaek

A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

TSA 8759526
TAP 8749529

8/ Using the Supervisor Calls. it i et et e e e e e e e e e e 227

Calling Procedure i i i e e e e e e e e 227
Program Entry and Return Conditions.ottt i ittt i i et e e e e e e e 227
SUPEIVISOr Calls. . . o ottt e e e e e e e e e e e 228
Numerical List of SV Cs it e s et e e e e e e e 331
Alphabetical List 0f SV Cs. it i i it e e e e e e e e 334
Sample Programs. e e e e e e e e e e e e e e e e e 336
9/ Technical Information on TRSDOS Commands and Utilities it e iee e 361
Appendix A/ TRSDOS Error Messages. . « v v v v vt ot et e st et et et e e e e e e e e e 365
Appendix B/ Memory Map e e e e e e 371
Appendix C/ Character Codes . . . o vttt it et et e e e e e e e e e 373
Appendix D/ Keyboard Code Mapttt it it e e e e e 383
Appendix E/ Programmable SV Cs e e 385
Appendix F/ Using SYS 13/8Y S . it e 387
X . o ot e e e e e 389

vii

Utility Programs

In TRSDOS Version 6.2, this overlay contains the message “No ECl is present
at SYS13” if you have not implemented an Extended Command Interpreter
(ECI) or an Immediate Execution Program (IEP). You may purge this overlay if
you do not intend to use an ECI or an IEP. See Appendix F, Using SYS13, for
more information.

BACKUP — Used to duplicate data from one disk to another.

COMM — A communications package for use with the RS-232C
hardware.

CONV — Used to copy files from Model 11l TRSDOS to TRSDOS Version
6.

DOS/HLP — (Version 6.2 only) The data file used with the HELP utility.

FORMAT — Used to put track, sector, and directory information on a disk.

HELP/CMD — (Version 6.2 only) Used to provide on-line information about
the TRSDOS commands.

LOG — Used to log in a double-sided diskette in Drive 0. Also updates
the Drive Code Table information as with the DEVICE library
command.

PATCH — Used to make changes to existing files.

REPAIR — Used to correct certain information on non-TRSDOS format-
ted diskettes.

TAPE100 — A disk/tape, tape/disk utility for cassette tape operations with

the TRS-80 Model 100.

Device Driver Programs

Filter Programs

COM/DVR — The RS-232C communications driver.

FLOPPY/DCT — Configures floppy drives in the system. Not needed with a
floppy-only system.

JL/DVR — The Joblog driver program.

MEMDISK/DCT — Used to establish a pseudo floppy drive in memory.

CLICK/FLT — Produces a short tone as each key is pressed.

FORMS/FLT — Used to select printer parameters and perform character
translation.

KSM/FLT — The Keystroke Multiply feature, which allows the assigning

of user-determined phrases to alphabetic keys.

Creating a Minimum Configuration Disk

Al files except certain /SYS files may be purged from your Drive 0 disk. Addi-
tionally, if you place the needed /SYS files in high memory with the SYSTEM
(SYSRES) command, it will be possible to run with a minimum configuration
disk in Drive 0 after booting the system. Keep the following points in mind when
purging system files:

« For operation, SYS files 1, 2, 3, 4, 10, and 12 should remain on the Drive
0 disk or be resident in memory.

189

+ SYS2 must be on the system disk if a configuration file is to be loaded.

+ SYS11 must be present only if any JCL files will be used.

« All three libraries (SYS files 6, 7, and 8) may be purged if no library com-
mand will be used.

+ SYS5 and SYS9 may be purged if the system DEBUG package is not
needed.

» SYS0 may be removed from any disk not used for booting.

» SYS11 (the JCL processor) and SYS6 (containing the DO library com-
mand) must both be on the disk if the DO command is to be used. Also,
if you remove SYS6, you may as well remove SYS11.

» SYS13 may be removed if you have not implemented an ECI, an IEP file,
or if you do not intend to use them.

The presence of any utility, driver, or filter program is dependent upon your in-
dividual needs. You can save most of the TRSDOS features in a configuration
file using the SYSTEM (SYSGEN) command, so the driver and filter programs
will not be needed in run time applications. If you intend to use the HELP utility,
your disk must contain the DOS/HLP file.

The owner (update) passwords for TRSDOS files are as follows:

File Type Extension Owner Password
System files (/SYS) LSIDOS
Filter files (/FLT) FILTER
Driver files (/DVR) DRIVER
Utility files (/CMD) UTILITY
BASIC BASIC
BASIC overlays (/OV$) BASIC
CONFIG/SYS CCC
Drive Code Table (/DCT) UTILITY

Initializer

190

5/Drive Access

Drive Code Table (DCT)

TRSDOS uses a Drive Code Table (DCT) to interface the operating system with
specific disk driver routines. Note especially the fields that specify the allocation
scheme for a given drive. This data is essential in the allocation and accessi-
bility of file records.

The DCT contains eight 10-byte positions — one for each logical drive des-
ignated 0-7. TRSDOS supports a standard configuration of two-floppy
drives. You may have up to four floppy drives. This is the default initializa-
tion when TRSDOS is loaded.

Here is the Drive Code Table layout:
DCT+0

This is the first byte of a 3-byte vector to the disk I/O driver routines. This byte
is normally X‘C3: If the drive is disabled or has not been configured (see the
SYSTEM command in the Disk System Owner’s Manual), this byte is a RET
instruction (X'C9).

DCT+1 and DCT +2

Contain the entry address of the routines that drive the physical hardware.
DCT+3

Contains a series of flags for drive specifications.

Bit 7— Set to “1” if the drive is software write protected, “0” if it is not. (See
the SYSTEM command in the Disk System Owner’s Manual.)

Bit 6— Set to “1” for DDEN (double density), or “0” for SDEN (single
density).

Bit 5— Set to “1” if the drive is an 8" drive. Set to “0” if it is a 54" drive.

Bit 4— A “1” causes the selection of the disk’s second side. The first side
is selected if this bit is “0.” This bit value matches the side indicator
bit in the sector header written by the Floppy Disk Controller
(FDC).

Bit 3— A “1” indicates a hard drive (Winchester). A “0” denotes a floppy
drive (54" or 8").

Bit 2— Indicates the time delay between selection of a 54" drive and the
first poll of the status register. A “1” value indicates 0.5 second and
a “0” indicates 1.0 second. See the SYSTEM command in the Disk
System Owner’s Manual for more details.

If the drive is a hard drive, this bit indicates either a fixed or remov-
able disk: “1” =fixed, “0” = removable.

Bits 1 and @ — Contain the step rate specification for the Floppy Disk Con-
troller. (See the SYSTEM command in the Disk System Owner’s
Manual.) In the case of a hard drive, this field may indicate the drive
address (0-3).

DCT+4
Contains additional drive specifications.

Bit 7— (Version 6.2 only) If “1”, no @CKDRYV is done when accessing the
drive. If an application opens several files on a drive, this bit can be
set to speed I/O on that drive after the first successful open is
performed.

193

In versions prior to TRSDOS 6.2, this bit is reserved for future use.
In order to maintain compatibility with future releases of TRSDOS,
do not use this bit.

Bit 6 — If “1”, the controller is capable of double-density mode.

Bit 5— “1” indicates that this is a 2-sided floppy diskette; “0” indicates a
1-sided floppy disk. Do not confuse this bit with Bit 4 of DCT + 3.
This bit shows if the disk is double-sided; Bit 4 of DCT + 3 tells the
controller what side the current I/O is to be on.

If the hard drive bit (DCT + 3, Bit 3) is set, a “1” denotes double the
cylinder count stored in DCT + 6. (This implies that a logical cylin-
der is made up of two physical cylinders.)

Bit 4 —If “1, indicates an alien (non-standard) disk controller.

Bits 0-3 — Contain the physical drive address by bit selection (0001, 0010,
0100, and 1000 equal logical Drives 0, 1, 2, and 3, respectively, in
a default system). The system supports a translation only where no
more than one bit can be set.

If the alien bit (Bit 4) is set, these bits may indicate the starting head
number.

DCT+5

Contains the current cylinder position of the drive. It normally stores a copy of
the Floppy Disk Controller’s track register contents whenever the FDC is
selected for access to this drive. It can then be used to reload the track register
whenever the FDC is reselected.

If the alien bit (DCT + 4, Bit 4) is set, DCT + 5 may contain the drive select code
for the alien controller.

DCT+6

Contains the highest numbered cylinder on the drive. Since cylinders are num-
bered from zero, a 35-track drive is recorded as X'22, a 40-track drive as X'27,
and an 80-track drive as X'4F! If the hard drive bit (DCT + 3, Bit 3) is set, the true
cylinder count depends on DCT + 4, Bit 5. If that bit is a “1,” DCT + 6 contains
only half of the true cylinder count.

DCT+7
Contains allocation information.
Bits 5-7 — Contain the number of heads for a hard drive.

Bits 0-4 — Contain the highest numbered sector relative to zero. A 10-
sector-per-track drive would show X‘09’ If DCT + 4, Bit 5 indicates
2-sided operation, the sectors per cylinder equals twice this
number.

DCT+8
Contains additional allocation information.

Bits 5-7 — Contain the number of granules per track allocated in the for-
matting process. If DCT + 4, Bit 5 indicates 2-sided operation, the
granules per cylinder equals twice this number. For a hard drive,
this number is the total granules per cylinder.

Bits 0-4 — Contain the number of sectors per granule that was used in the
formatting operation.

DCT+9

Contains the number of the cylinder where the directory is located. For any
directory access, the system first attempts to use this value to read the direc-
tory. If this operation is unsuccessful, the system examines the BOOT granule
(cylinder @) directory address byte.

194

Bytes DCT + 6, DCT +7, and DCT + 8 must relate without conflicts. That is, the
highest numbered sector (+ 1) divided by the number of sectors per granule
(+ 1) must equal the number of granules per track (+1).

Disk I/0 Table

TRSDOS interfaces with hardware peripherals by means of software drivers.
The drivers are, in general, coupled to the operating system through data
parameters stored in the system’s many tables. In this way, hardware not cur-
rently supported by TRSDOS can easily be supported by generating driver soft-
ware and updating the system tables.

Disk drive sub-systems (such as controllers for 54" drives, 8" drives, and hard
disk drives) have many parameters addressed in the Drive Code Table (DCT).
Besides those operating parameters, controllers also require various com-
mands (SELECT, SECTOR READ, SECTOR WRITE, and so on) to controi the
physical devices. TRSDOS has defined command conventions to deal with
most commands available on standard Disk Controllers.

The function value (hexadecimal or decimal) you wish to pass to the driver
should go in register B. The available functions are:

Hex Dec Function Operation Performed
X'00 0 DCSTAT Test to see if drive is assigned in DCT
Xotr 1 SELECT Select a new drive and return status
X'02 2 DCINIT Set to cylinder 0, restore, set side 0
X'03 3 DCRES Reset the Floppy Disk Controller
X'o4 4 RSTOR Issue FDC RESTORE command
X'05’ 5 STEPI Issue FDC STEP IN command
X'06’ 6 SEEK Seek a cylinder
X'07 7 TSTBSY Test to see if requested drive is busy
X'08’ 8 RDHDR Read sector header information
X'09’ 9 RDSEC Read sector

X'0A 10 VRSEC Verify if the sector is readable

X'0B’ 11 RDTRK Issue an FDC track read command

XocC 12 HDFMT Format the device

X‘oD’ 13 WRSEC Write a sector

X'OF’ 14 WRSYS Write a system sector (for example, directory)
X'0F 15 WRTRK Issue an FDC track write command

Function codes X*10’ to X'FF’ are reserved for future use.

Directory Records (DIREC)

The directory contains information needed to access all files on the disk. The
directory records section is limited to a maximum of 32 sectors because of
physical limitations in the Hash Index Table. Two additional sectors in the direc-
tory cylinder are used by the system for the Granule Allocation Table and the
Hash Index Table. The directory is contained on one cylinder. Thus, a 10-sector-
per-cylinder formatted disk has, at most, eight directory sectors. See the sec-

195

tion on the Hash Index Table for the formula to calculate the number of directory
sectors.

A directory record is 32 bytes in length. Each directory sector contains eight
directory records (256/32 =8). On system disks, the first two directory records
of the first eight directory sectors are reserved for system overlays. The total
number of files possible on a disk equals the number of directory sectors times
eight (since 256/32 = 8). The number available for use is reduced by 16 on sys-
tem disks to account for those record slots reserved for the operating system.
The following table shows the directory record capacity (file capacity) of each
format type. The dash suffix (-1 or-2) on the items in the density column rep-
resents the number of sides formatted (for example, SDEN-1 means single
density, 1-sided).

Sectors User Files User
per Directory on Data Files on

Cylinder Sectors Disk** SYS Disk
5" SDEN-1 10 8 62 48
5" SDEN-2 20 18 142 128
5" DDEN-1 18 16 126 112
5" DDEN-2 36 32 254 240
8" SDEN-1 16 14 110 96
8" SDEN-2 32 30 238 224
8" DDEN-1 30 28 222 208
8" DDEN-2 60 32 254 240

Hard Disk*

*Hard drive format depends on the drive size and type, as well as the user’s
division of the physical drive into logical drives. After setting up and format-
ting the drive, you can use the FREE library command to see the available
files.

**Note: Two directory records are reserved for BOOT/SYS and DIR/SYS, and
are not included in the figures for this column.

TRSDOS Version 6 is upward compatible with other TRSDOS 2.3 compatible
operating systems in its directory format. The data contained in the directory
has been extended. An SVC is included to either display an abbreviated direc-
tory or place its data in a user-defined buffer area. For detailed information, see
the @DODIR and @RAMDIR SVCs.

The following information describes the contents of each directory field:
DIR+0
Contains all attributes of the designated file.

Bit 7—If “0;" this flag indicates that the directory record is the file’s primary
directory entry (FPDE). If “1; the directory record is one of the file’s
extended directory entries (FXDE). Since a directory entry can
contain information on up to four extents (see notes on the extent
fields, beginning with DIR +22), a file that is fractured into more
than four extents requires additional directory records.

Bit 6 — Specifies a SYStem file if “1,” a nonsystem file if “0”
Bit 5— If set to “1, indicates a Partition Data Set (PDS) file.

Bit 4 — Indicates whether the directory record is in use or not. If set to “1,
the record is in use. If “0,” the directory record is not active,
although it may appear to contain directory information. In contrast
to some operating systems that zero out the directory record when
you remove a file, TRSDOS only resets this bit to zero.

Bit 3— Specifies the visibility. If “1,” the file is INVisible to a directory dis-
play or other library function where visibility is a parameter. If a “0;
then the file is VISible. (The file can be referenced if specified by
name by an @INIT or @OPEN SVC)

196

Bits 0-2— Contain the USER protection level of the file. The 3-bit binary
value is one of the following:

0=FULL 2=RENAME 4=UPDATE 6=EXECUTE
1=REMOVE 3=WRITE 5=READ 7=NO ACCESS

DIR+1

Contains various file flags and the month field of the packed date of last
modification.

Bit 7—Set to “1” if the file was “CREATEd” (see CREATE library com-
mand in the Disk System Owner's Manual). Since the CREATE
command can reference a file that is currently existing but non-
CREATE(, it can turn a non-CREATEd file into a CREATEd one.
You can achieve the same effect by changing this bit to a “1”

Bit 6 — If set to “1;" the file has not been backed up since its last modifica-
tion. The BACKUP utility is the only TRSDOS facility that resets
this flag. It is set during the close operation if the File Control Block
(FCB + 0, Bit 2) shows a modification of file data.

Bit 5—If set to “1,” indicates a file in an open condition with UPDATE
access or greater.

Bit 4 — If the file was modified during a session where the system date was
not maintained, this bit is set to “1”” This specifies that the packed
date of modification (if any) stored in the next three fields is not the
actual date the modification occurred. If this bit is “1,” the directory
command displays plus signs (+) between the date fields if you
request the (A) option.

Bits 0-3 — Contain the binary month of the last modification date. If this
field is a zero, DATE was not set when the file was established or
since if it was updated.

DIR+2
Contains the remaining date of modification fields.
Bits 3-7 — Contain the binary day of last modification.

Bits 0-2 — Contain the binary year minus 80. For example, 1980 is coded
as 000, 1981 as 001, 1982 as 010, and so on.

DIR+3

Contains the end-of-file offset byte. This byte and the ending record number
(ERN) form a pointer to the byte position that follows the last byte written. This
assumes that programmers, interfacing in machine language, properly main-
tain the next record number (NRN) offset pointer when the file is closed.

DIR+4

Contains the logical record length (LRL) specified when the file was generated
or when it was later changed with a CLONE parameter.

DIR +5 through DIR + 12

Contain the name field of the filespec. The filename is left justified and padded
with trailing blanks.

DIR +13 through DIR + 15

Contain the extension field of the filespec. It is left justified and padded with
trailing blanks.

DIR+16 and DIR+17

Contain the OWNER password hash code.

DIR+18 and DIR+19

Contain the USER password hash code. The protection level in DIR + 0 is asso-
ciated with this password.

197

DIR+20 and DIR + 21

Contain the ending record number (ERN), which is based on full sectors. If the
ERN is zero, it indicates that no writing has taken place (or that the file was not
closed properly). If the LRL is not 256, the ERN represents the sector where the
EOF occurs. You should use ERN minus 1 to account for a value relative to sec-
tor 0 of the file.

DIR+22 and DIR +23

This is the first extent field. Its contents indicate which cylinder stores the first
granule of the extent, which relative granule it is, and how many contiguous
grans are in use in the extent.

DIR + 22 — Contains the cylinder value for the starting gran of that extent.

DIR + 23, Bits 5-7 — Contain the number of the granule in the cylinder indi-
cated by DIR + 22 which is the first granule of the file for that
extent. This value is relative to zero (“0” denotes the first gran,
“1” denotes the second, and so on).

DIR + 23, Bits 0-4 — Contain the number of contiguous granules, relative
to 0 (“0” denotes one gran, 1’ denotes two, and so on). Since
the field is five bits, it contains a maximum of X‘1F’ or 31, which
represents 32 contiguous grans.

DIR +24 and DIR + 25

Contain the fields for the second extent. The format is identical to that for
Extent 1.

DIR + 26 and DIR + 27
Contain the fields for the third extent. The format is identical to that for Extent 1.
DIR + 28 and DIR +29

Contain the fields for the fourth extent. The format is identical to that for
Extent 1.

DIR+30

This is a flag noting whether or not a link exists to an extended directory record.
If no further directory records are linked, the byte contains X‘FF. A value of X'FE’
in this byte establishes a link to an extended directory entry. (See “Extended
Directory Records” below.)

DIR+31

This is the link to the extended directory entry noted by the previous byte. The
link code is the Directory Entry Code (DEC) of the extended directory record.
The DEC is actually the position of the Hash Index Table byte mapped to the
directory record. For more information, see the section “Hash Index Table”

Extended Directory Records

Extended directory records (FXDE) have the same format as primary directory
records, except that only Bytes 0, 1, and 21-31 are utilized. Within Byte 0, only
Bits 4 and 7 are significant. Byte 1 contains the DEC of the directory record of
which this is an extension. An extended directory record may point to yet
another directory record, so a file may contain an “unlimited” number of extents
(limited only by the total number of directory records available).

Granule Allocation Table (GAT)

The Granule Allocation Table (GAT) contains information on the free and
assigned space on the disk. The GAT also contains data about the formatting
used on the disk.

198

A disk is divided into cylinders (tracks) and sectors. Each cylinder has a spec-
ified number of sectors. A group of sectors is allocated whenever additional
space is needed. This group is called a granule. The number of sectors per
granule depends on the total number of sectors available on a logical drive. The
GAT provides for a maximum of eight granules per cylinder.

In the GAT bytes, each bit set to “1” indicates a corresponding granule in use
(or locked out). Each bit reset to “0” indicates a granule free to be used. In a
GAT byte, bit @ corresponds to the first relative granule, bit 1 to the second rel-
ative granule, bit 2 the third, and so on. A 54" single density diskette is format-
ted at 10 sectors per cylinder, 5 sectors per granule, 2 granules per cylinder.
Thus, that configuration uses only bits @ and 1 of the GAT byte. The remainder
of the GAT byte contains all 1's, denoting unavailable granules. Other formatting
conventions are as follows:

Sectors Sectors Granules Maximum
per per per No. of
Cylinder Granule Cylinder Cylinders
5" SDEN 10 5 2 80
5" DDEN 18 6 3 80
8" SDEN 16 8 2 77
8" DDEN 30 10 3 77
5-MEG HARD* 32 16 8 153

*Hard drive format depends on the drive size and type, as well as the user’s divi-
sion of the drive into logical drives. These values assume that one physical
hard disk is treated as one logical drive.

The above table is valid for single-sided disks. TRSDOS supports double-sided
operation if the hardware interfacing the physical drives to the CPU allows it. A
two-headed drive functions as a single logical drive, with the second side as a
cylinder-for-cylinder extension of the first side. A bit in the Drive Code Table
(DCT + 4, Bit 5) indicates one-sided or two-sided drive configuration.

A Winchester-type hard disk can be divided by heads into multiple logical
drives. Details are supplied with Radio Shack drives.

The Granule Allocation Table is the first relative sector of the directory cylinder.
The following information describes the layout and contents of the GAT.

GAT + X‘00’ through GAT + X‘5F’

Contains the free/assigned table information. GAT + 0 corresponds to cylinder
0, GAT + 1 corresponds to cylinder 1, GAT + 2 corresponds to cylinder 2, and so
on. As noted above, bit @ of each byte corresponds to the first granule on the
cylinder, bit 1 to the second granule, and so on. A value of “1” indicates the
granule is not available for use.

GAT + X‘'60’ through GAT + X‘BF’

Contains the available/locked out table information. It corresponds cylinder for
cylinder in the same way as the free/assigned table. It is used during mirror-
image backups to determine if the destination diskette has the proper capacity
to effect a backup of the source diskette. This table does not exist for hard
disks; for this reason, mirror-image backups cannot be performed on hard disk.

GAT + X‘C0’ through GAT + X‘CA’

Used in hard drive configurations; extends the free/assigned table from X'00
through X‘CA.Hard drive capacity up to 203 (0-202) logical or 406 physical cyl-
inders is supported.

GAT +X‘CP’

Contains the operating system version that was used in formatting the disk. For
example, disks formatted under TRSDOS 6.1 have a value of X'61’ contained in
this byte. It is used to determine whether or not the disk contains all of the
parameters needed for TRSDOS operation.

199

GAT +X‘CC’

Contains the number of cylinders in excess of 35. It is used to minimize the time
required to compute the highest numbered cylinder formatted on the disk. It is
excess 35 to provide compatibility with alien systems not maintaining this byte.
If you have a disk that was formatted on an alien system for other than 35 cyl-
inders, this byte can be automatically configured by using the REPAIR utility.
(See the section on the REPAIR utility in the Disk System Owner’s Manual.)

GAT +X‘CD’
Contains data about the formatting of the disk.
Bit 7—If set to “1,’ the disk is a data disk. If “0,’ the disk is a system disk.

Bit 6—If set to “1," indicates double-density formatting. If “0," indicates
single-density formatting.

Bit 5—If set to “1,” indicates 2-sided disk. If “0," indicates 1-sided disk.
Bits 3-4 — Reserved.
Bits 0-2 — Contain the number of granules per cylinder minus 1.

GAT + X‘CE’ and GAT + X‘CF’

Contain the 16-bit hash code of the disk master password. The code is stored
in standard low-order, high-order format.

GAT + X‘D0’ through GAT + X‘D7’

Contain the disk name. This is the name displayed during a FREE or DIR oper-
ation. The disk name is assigned during formatting or during an ATTRIB disk
renaming operation. The name is left justified and padded with blanks.

GAT + X‘D8’ through GAT + X‘DF’

Contain the date that the diskette was formatted or the date that it was used as
the destination in a mirror image backup operation in the format mm/dd/yy.

GAT + X‘E@’ through GAT + X‘FF’
Reserved for system use.

In Version 6.2:

GAT + X‘EQ’ through GAT + X‘F4’
Reserved for system use.

GAT + X‘F5’ through GAT + X‘FF’
Contain the Media Data Block (MDB).

GAT + X'F5’ through GAT + X‘F8 — the identifying header. These four
bytes contain a 3 (X'03’), followed by the letters LSI (X'4C’,X‘53",X°49’).

GAT + X'F8’ through GAT + X'FF’ — the last seven bytes of the DCT in use
when the media was formatted. FORMAT, MemDISK, and TRSFORM4 in-
stall this information. See Drive Control Table (DCT) for more information
on these bytes.

Hash Index Table (HIT)

The Hash Index Table is the key to addressing any file in the directory. It pin-
points the location of a file’s directory with a minimum of disk accesses, keeping
overhead low and providing rapid file access.

The system’s procedure is to construct an 11-byte filename/extension field. The
filename is left-justified and padded with blanks. The file extension is then
inserted and padded with blanks; it occupies the three least significant bytes of

200

the 11-byte field. This field is processed through a hashing algorithm which pro-
duces a single byte value in the range X'01 through X‘FF. (A hash value of X'00’
indicates a spare HIT position.)

The system then stores the hash code in the Hash Index Table (HIT) at a posi-
tion corresponding to the directory record that contains the file’s directory. Since
more than one 11-byte string can hash to identical codes, the opportunity for
“collisions” exists. For this reason, the search algorithm scans the HIT for a
matching code entry, reads the directory record corresponding to the matching
HIT position, and compares the filename/extension stored in the directory with
that provided in the file specification. If both match, the directory has been
found. If the two fields do not match, the HIT entry was a collision and the algo-
rithm continues its search from the next HIT entry.

The position of the HIT entry in the hash table is called the Directory Entry Code
(DEC) of the file. All files have at least one DEC. Files that are extended beyond
four extents have a DEC for each extended directory entry and use more than
one filename slot. To maximize the number of file slots available, you should
keep your files below five extents where possible.

Each HIT entry is mapped to the directory sectors by the DEC’s position in the
HIT. Think of the HIT as eight rows of 32-byte fields. Each row is mapped to one
of the directory records in a directory sector: The first HIT row is mapped to the
first directory record, the second HIT row to the second directory record, and so
on. Each column of the HIT field (0-31) is mapped to a directory sector. The first
column is mapped to the first directory sector in the directory cylinder (not
including the GAT and HIT). Therefore, the first column corresponds to sector
2, the second column to sector 3, and so on. The maximum number of HIT col-
umns used depends on the disk formatting according to the formula:
N = number of sectors per cylinder minus two, up to 32.

The following chart shows the correlation of the Hash Index Table to the direc-
tory records. Each byte value shown represents the position in the HIT. This
position value is the DEC. The actual contents of each byte is either a X(00)
indicating a spare slot, or the 1-byte hash code of the file that occupies the cor-
responding directory record.

Columns

Row1 00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

Row2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

Row3 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E G5F

Row4 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

Row5 80 81 82 83 84 85 8 87 8 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 O9A 9B 9C 9D O9E OF

Row6 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

Row7 Co C1 C2 C3 C4 C5 Ce C7 C8 C9 CA CB CC CD CE CF
Do DI D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

Row8 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
FO Fi F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

A 54" single density disk has 10 sectors per cylinder, two of which are reserved
for the GAT and HIT. Since only eight directory sectors are possible, only the
first eight positions of each HIT row are used. Other formats use more columns
of the HIT, depending on the number of sectors per cylinder in the formatting
scheme.

The eight directory records for sector 2 of the directory cylinder correspond to
assignments in HIT positions 00, 20, 40, 60, 80, A0, C0, and EQ. On system

201

disks, the following positions are reserved for system overlays. On data disks,
these positions (except for 00 and 01) are available to the user.

00 — BOOT/SYS 20 — SYS6/SYS
01 — DIR/SYS 21 — SYS7/SYS
02 — SYS0/SYS 22 — SYS8/SYS
03 — SYS1/SYS 23 — SYS9/SYS
04 — SYS2/SYS 24 — SYS10/SYS
05 — SYS3/SYS 25 — SYS11/SYS
06 — SYS4/SYS 26 — SYS12/SYS
07 — SYS5/SYS 27 — SYS13/SYS

These entry positions correspond to the first two rows of each directory sector
for the first eight directory sectors. Since the operating system accesses these
overlays by position in the HIT rather than by filename, these positions are
reserved on system disks.

The design of the Hash Index Table limits the number of files on any one drive
to a maximum of 256.

Locating a Directory Record

Because of the coding scheme used on the entries in the HIT table, you can
locate a directory record with only a few instructions. The instructions are:

AND 1FH
ADD A2
(calculates the sector)
and
AND QE@H

(calculates the offset in that sector)

For example, if you have a Directory Entry Code (DEC) of X84, the following
occurs when these instructions are performed:

Value of accumulator

A=X84'
AND 1FH

A=X04
ADD A2

A=X06’

The record is in the seventh
sector of the directory cylinder
(0-6)

Using the Directory Entry Code (DEC) again, you can find the offset into the
sector that was found using the above instructions by executing one
instruction:

Value of accumulator
A=X'84’
AND QE@H
A=X80
The directory record is X'80’ (128)
bytes from the beginning of
the sector

If the record containing the sector is loaded on a 256-byte boundary (LSB of the
address is X'00’) and HL points to the starting address of the sector, then you
can use the above value to calculate the actual address of the directory record
by executing the instruction:

LD LA

202

When executed after the calculation of the offset, this causes HL to point to the
record. For example:
A=X'80
LD HL +420@H ;Where sector is loaded
LD L:sA ;Replace LSB with offset

HL now contains 4280H, which is the address of the directory record you
wanted.

If you cannot place the sector on a 256-byte boundary, then you can use the
following instructions:

A=X80’
LD HL +4256H ;Where sector is loaded
LD E:A ;Put offset in E (LSB)
LD D@ ;Put a zero in D (MSB)
ADD HL sDE ;Add two values together

HL now contains 42D6H, which is the address of the directory record.

Note that the first DEC found with a matching hash code may be the file’s
extended directory entry (FXDE). Therefore, if you are going to write system
code to deal with this directory scheme, you must properly deal with the FPDE/
FXDE entries. See Directory Records for more information.

203

Programming With Restart Vectors

The Restart instruction (RST) provides the assembly language programmer
with the ability to call a subroutine with a one-byte call. If a routine is called
many times by a program, the amount of space that is saved by using the RST
instruction (instead of a three-byte CALL) can be significant.

In TRSDOS a RST instruction is also used to interface to the operating system.
The system uses RST 28H for supervisor calls. RSTS 00H, 30H, and 38H are
for the system’s internal use.

RSTs 08H, 10H, 18H, and 20H are available for your use. Caution: Some pro-
grams, such as BASIC, may use some of these RSTs.

Each RST instruction calls the address given in the operand field of the instruc-
tion. For example, RST 18H causes the system to push the current program
counter address onto the stack and then set the program counter to address
0018H. RST 20H causes a jump to location 0020H, and so on.

Each RST has three bytes reserved for the subroutine to use. If the subroutine
will not fit in three bytes, then you should code a jump instruction (JP) to where
the subroutine is located. At the end of the subroutine, code a return instruction
(RET). Control is then transferred to the instruction that follows the RST.

For example, suppose you want to use RST 18H to call a subroutine named
“ROUTINE. The following routine loads the restart vector with a jump instruc-
tion and saves the old contents of the restart vector for later use.

SETRST: LD Xs@B18H iRestart area address
LD IY sRDATA iData area address
LD B3 iNumber of bvtes to move
LOOP: LD Ay(IX iRead a bvyte from
irestart area
LD C+(IY) iRead a bvte from data
iarea
LD (IX)C iStore this brvte in
irestart area
LD (IY) A iStore this bvyte in data
sarea
INC it ilncrement restart area
iPointer
INC 1Y ilncrement data area
iPointer
DJUNZ LOOP iLoorp till 3 bvtes moved
RET iReturn when done
RDATA: DEFB @BC3H iJump instruction (JP)

DEFHW ROUTINE iOperand (name of
isubroutine)

Before exiting the program, calling the above routine again puts the original
contents of the restart vector back in place.

KFLAGS$ (BREAK), (PAUSE), and

Interfacing

KFLAGS$ contains three bits associated with the keyboard functions of BREAK,
PAUSE ((SHIFT) (@), and ENTER. A task processor interrupt routine (called the
KFLAG$ scanner) examines the physical keyboard and sets the appropriate
KFLAGS bit if any of the conditions are observed. Similarly, the RS-232C driver
routine also sets the KFLAGS$ bits if it detects the matching conditions being
received.

211

Many applications need to detect a PAUSE or BREAK while they are running.
BASIC checks for these conditions after each logical statement is executed
(that is, at the end of a line or at a “:”). That is how, in BASIC, you can stop a
program with the key or pause a listing.

One method of detecting the condition in previous TRSDOS operating systems
was to issue the @KBD supervisor call to check for BREAK or PAUSE
(SHIFD@), ignoring all other keys. Unfortunately, this caused keyboard type-
ahead to be ineffective; the @KBD SVC flushed out the type-ahead buffer if
any other keystrokes were stacked up.

Another method was to scan the keyboard, physically examining the keyboard
matrix. An undesirable side effect of this method was that type-ahead stored up
the keyboard depression for some future unexpected input request. Examining
the keyboard directly also inhibits remote terminals from passing the BREAK or
PAUSE condition.

In TRSDOS Version 6, the KFLAG$ scanner examines the keyboard for the
BREAK, PAUSE, and ENTER functions. If any of these conditions are detected,
appropriate bits in the KFLAGS$ are set (bits 0, 1, and 2 respectively).

Note that the KFLAG$ scanner only sets the bits. It does not reset them
because the “events” would occur too fast for your program to detect. Think of
the KFLAGS$ bits as a latch. Once a condition is detected (latched), it remains
latched until something examines the latch and resets it— a function to be per-
formed by your KFLAG$ detection routine.

Under Version 6.2, you can use the @CKBRKC SVC, SVC 106, to see if the
BREAK key has been pressed. If a BREAK condition exists, @CKBRKC resets
the break bit of KFLAGS.

For illustration, the following example routine uses the BREAK and PAUSE
conditions:

KFLAGS EQU 10
@FLAGS EQU 101

BKBD EQU 8

BKEY EQU 1

BPAUSE EQU 16

CKPAWS LD A»BFLAGS iGet Flagds pointer
RST 28H iinto redister IY
LD Ay (IY+KFLAGS) iGet the KFLAG%
RRCA iBit @ to carry
JP C+GOTBRK iGo on BREAK
RRCA iBit 1 to carry
RET NC iReturn if no pause
CALL RESKFL iReset the flag
PUSH DE .

FLUSH LD ABKBD iFlush tvype-ahead
RST 28H ibuffer while
JR ZFLUSH iignoring errors
POP DE

PROMPT PUSH DE
LD ABKEY ilait on Kevy entry
RST 28H
POP DE
CP 80H iAbort on
JP Z23GOTBRK
CP GOH ildgnore PAUSE;S
JR Z+PROMPT ielse + +

RESKFL PUSH HL ireset KFLAGS
PUSH AF
LD AsBFLAGS iGet flags pointer
RST 28H iinto register IY

RESKFL1 LD A»(IY+KFLAGS) 3iGet the flag
AND BF8H iStriep ENTER

212

LD (IY+KFLAG$) »A SPAUSE: BREAK

PUSH BC

LD Bs1G

LD ABPAUSE iPause a while

RST 28H

POP BC

LD A»(IY+KFLAGS) 3iChecK if finder is
AND 3 istill on Kevy

JR NZ sRESKFL1 iReset it adain
POP AF iRestore redisters
POP HL sand exit

RET

The best way to explain this KFLAG$ detection routine is to take it apart and
discuss each subroutine. The first piece reads the KFLAG$ contents:

KFLAG$ EQU 10

CKPAWS LD ABFLAGS iGet Flags pointer
RST 28H iinto redister IY
LD Ay (IY+KFLAGS) iGet the KFLAGS$
RRCA iBit @ to carry
JP C+GOTBRK iGo on BREAK
RRCA iBit 1 to carrvy
RET NC iReturn if no Pause

The @FLAGS SVC obtains the flags pointer from TRSDOS. Note that if your
application uses the Y index register, you should save and restore it within the
CKPAWS routine. (Alternatively, you could use @FLAGS to calculate the loca-
tion of KFLAGS$, use register HL instead of |Y, and place the address into the LD
instructions of CKPAWS at the beginning of your application.)

The first rotate instruction places the BREAK bit into the carry flag. Thus, if a
BREAK condition is in effect, the subroutine branches to “GOTBRK;’ which is
your BREAK handling routine.

If there is no BREAK condition, the second rotate places what was originally in
the PAUSE bit into the carry flag. If no PAUSE condition is in effect, the routine
returns to the caller.

This sequence of code gives a higher priority to BREAK (that is, if both BREAK
and PAUSE conditions are pending, the BREAK condition has precedence).
Note that the GOTBRK routine needs to clear the KFLAGS bits after it services
the BREAK condition. This is easily done via a call to RESKFL.

The next part of the routine is executed on a PAUSE condition:

CALL RESKFL iReset the flag
PUSH DE

FLUSH LD ABKBD iFlush tvpe-ahead
RST 28H ibuffer while
JR ZFLUSH iignoring errors
POP DE

First the KFLAGS$ bits are reset via the call to RESKFL. Next, the routine takes
care of the possibility that type-ahead is active. If it is, the PAUSE key was prob-
ably detected by the type-ahead routine and so is stacked in the type-ahead
buffer also. To flush out (remove all stored characters from) the type-ahead
buffer, @KBD is called until no characters remain (an NZ is returned).

Now that a PAUSEd state exists and the type-ahead buffer is cleared, the rou-
tine waits for a key input:

PROMPT PUSH DE

LD ABKEY iWait on Kevy entry
RST 28H

POP DE

CP 8@H iAbort on (BREAK

JP Z:GOTBRK

213

CP B@H ildnore PAUSE;S
JR Z +PROMPT ielse + v

The PROMPT routine accepts a BREAK and branches to your BREAK han-
dling routine. It ignores repeated PAUSE (the 60H). Any other character causes
it to fall through to the following routine which clears the KFLAG$:

RESKFL PUSH HL ireset KFLAGS$
PUSH AF
LD ABFLAGS iGet flags Pointer
RST 28H yinto register IY
RESKFL1 LD Ay (IY+KFLAGS) iGet the flad
AND @F8H iStrip ENTER
LD (IY+KFLAG%) »A iPAUSE s BREAK
PUSH BC
LD B:1G
LD AYEBPAUSE iPause a while
RST 28H
POP BC
LD Ay (IY+KFLAGS) iCheck if finder is
AND 3 istill on Kev
JR NZ sRESKFL1 iReset it adain
POP AF iRestore redisters
POP HL jand exit
RET

The RESKFL subroutine should be called when you first enter your application.
This is necessary to clear the flag bits that were probably in a “set” condition.
This “primes” the detection. The routine should also be called once a BREAK,
PAUSE, or ENTER condition is detected and handled. (You need to deal with
the flag bits for only the conditions you are using.)

Interfacing to @ICNFG

With the TRSDOS library command SYSGEN, many users may wish to SYS-
GEN the RS-232C driver. Before doing that, the RS-232C hardware (UART,
Baud Rate Generator, etc.) must be initialized. Simply using the SYSGEN com-
mand with the RS-232C driver resident is not enough; some initialization
routine is necessary. The @ICNFG (Initialization CoNFiGuration) vector is
included in TRSDOS to provide a way to invoke a routine to initialize the RS-
232C driver when the system is booted. It also provides a way to initialize the
hard disk controller at power-up (required by the Radio Shack hard disk
system).

The final stages of the booting process loads the configuration file CONFIG/
SYS if it exists. After the configuration file is loaded, an initialization subroutine
CALLs the @ICNFG vector. Thus, any initialization routine that is part of a
memory configuration can be invoked by chaining into @ICNFG.

If you need to configure your own routine that requires initialization at power-up,
you can chain into @ICNFG. The following procedure illustrates this link. The
first thing to do is to move the contents of the @ICNFG vector into your initiali-
zation routine:

LD ABFLAGS iGet flagds pPointer
RST Z28H iinto redister IY
LD Ay (IY+28) iGet opcode

LD (LINK) :A

LD L+ (IV+29) iGet address LOMW
LD H: (IY+38) iGet address HIGH

LD (LINK+1) sHL

This subroutine does this by transferring the 3-byte vector to your routine. You
then need to relocate your routine to its execution memory address. Once this

214

is done, transfer the relocated initialization entry point to the @ICNFG vector as
a jump instruction:

LD HL +INIT iGet (relocated)

LD (IY+29) L iinit address

LD (IY+30) sH

LD A»BC3H iSet JP instruction

LD (IY+28) A
If you need to invoke the initialization routine at this point, then you can use:
CALL ROUTINE ilnvoKe vour routine

Your initialization routine would be unique to the function it was to perform, but
an overall design would look like this:

INIT CALL ROUTINE iStart of init
LINK DEFS 3 iContinue on
ROUTINE

your initialization routine

RET

After linking in your routine, perform the SYSGEN. If you have followed these
procedures, your routine will be invoked every time you start up TRSDOS.

Interfacing to @KITSK

Background tasks can be invoked in one of two ways. For tasks that do not
require disk 1/0, you can use the RTC (Real Time Clock) interrupt and one of
the 12 task slots (or other external interrupt). For tasks that require disk I/0, you
can use the keyboard task process.

At the beginning of the TRSDOS keyboard driver is a call to @KITSK. This
means that any time that @KBD is called, the @KITSK vector is also called.
(The type-ahead task, however, bypasses this entry so that @KITSK is not
called from the type-ahead routine.) Therefore, if you want to interface a back-
ground routine that does disk I/O, you must chain into @KITSK.

The interfacing procedure to @KITSK is identical to that shown in the section
“Interfacing to @ICNFG;” except that 1Y + 31 through IY +33 is used to refer-
ence the @KITSK vector. You may want to start your background routine with:

START CALL ROUTINE iInvoke task
LINK DEFS 3 iFor BKITSK hook
ROUTINE EQU % iStart of the task

Be aware of one major pitfall. The @KBD routine is invoked from @CMNDI and
@CMNDR (which is in SYS1/SYS). This invocation is from the @KEYIN call,
which fetches the next command line after issuing the “TRSDOS Ready” mes-
sage. If your background task executes and opens or closes a file (or does any-
thing to cause the execution of a system overlay other than SYS1), then SYS1
is overwritten by SYS2 or SYS3. When your routine finishes, the @KEYIN han-
dler tries to return to what called it—SYS1, which is no longer resident. There-
fore, any task chained to @KITSK which causes a resident SYS1 to be over-
written must reload SYS1 before returning.

You can use the following code to reload SYS1 if SYS1 was resident prior to
your task’s execution:

ROUTINE LD ABFLAGS iGet flads Pointer
RST 28H iinto redister IY
LD A(IY-1) iGet resident over-
AND 8FH ilay and remove

LD (OLDSYS+1)+A Jthe entry code

215

rest of vour task

KIT EQU %

oLDSYS LD A0 iGet old overlay #
CP 83H ilas it SYS17?
RET NZ iReturn if noti else
RST 28H iGet SYS1 rer reg., A

i{tno RET needed)

Interfacing to the Task Processor

This section explains how to integrate interrupt tasks into your applications.

One of the hardware interrupts in the TRS-80 is the real time clock (RTC). The
RTC is synchronized to the AC line frequency and pulses at 60 pulses per sec-
ond, or once every 16.67 milliseconds. (Computers operating with 50 Hz AC
use a 50 pulses per second RTC interrupt. In this case, all time relationships
discussed in this section should be adjusted to the 50 Hz base.)

A software task processor manages the RTC interrupt in performing back-
ground tasks necessary to specific functions of TRSDOS (such as the time
clock, blinking cursor, and so on). The task processor allows up to 12 individual
tasks to be performed on a “time-sharing” basis.

These tasks are assigned to “task slots” numbered from 0 to 11. Slots 0-7 are
considered “low priority” tasks (executing every 266.67 milliseconds). Slots 8-
10 are medium priority tasks (executing every 33.33 milliseconds). Slot 11 is a
high priority task (executing every 16.66 milliseconds SYSTEM (FAST) or 33.33
milliseconds SYSTEM (SLOW)). Task slots 3, 7, 9, and 10 are reserved by the
system for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions,
respectively.

TRSDOS maintains a Task Control Block Vector Table (TCBVT) which contains
12 vectors, one for each of the 12 task slots. TRSDOS contains five supervisor
calls that manage the task vectors. The five SVCs and their functions are:

@CKTSK Checks to see whether a task slot is unused or active
@ADTSK Adds a task to the TCBVT

@RMTSK Removes atask from the TCBVT

@KLTSK Removes the currently executing task

@RPTSK Replaces the TCB address for the current task

The TRSDOS Task Control Block Vector Table contains vector pointers. Each
TCBVT vector points to an address in memory, which in turn contains the
address of the task. Thus, the tasks themselves are indirectly addressed.

When you are programming a task to be called by the task processor, the entry
point of the routine needs to be stored in memory. If you make this storage loca-
tion the beginning of a Task Control Block (TCB), the reason for indirect vector-
ing of interrupt tasks will become more clear. Consider an example TCB:

MYTCB DEFW MYTASK
COUNTER DEFB 15
TEMPY DEFS 1
MYTASK RET

This is a useless task, since the only thing it does is return from the interrupt.
However, note that a TCB location has been defined as “MYTCB” and that this
location contains the address of the task. A few more data bytes immediately
following the task address storage have also been defined.

Upon entry to a service routine, index register IX contains the address of the
TCB. You can therefore address any TCB data using index instructions. For
example, you could use the instruction “DEC (IX+2)” to decrement the value
contained in COUNTER in the above routine.

216

8/Using the Supervisor Calls

Supervisor Calls (SVCs) are operating system routines that are available to
assembly language programs. These routines alter certain system functions
and conditions, provide file access, and perform various computations. They
also perform 1/O to the keyboard, video display, and printer.

Each SVC has a number which you specify to invoke it. These numbers range
from 0 to 104.

In addition, under Version 6.2, you can write your own operating system rou-
tines using the numbers 124 through 127 to install your own SVC'’s. See Ap-
pendix E, “Programmable SVCs” for more information.

Calling Procedure

To call a TRSDOS SVC:

1. Load the SVC number for the desired SVC into register A. Also load any
other registers which are needed by the SVC, as detailed under Supervisor
Calls.

2. Execute a RST 28H instruction.

Note: If the SVC number supplied in register A is invalid, the system prints the
message “System Error xx’; where xx is usually 2B. It then returns you to
TRSDOS Ready (not to the program that made the invalid SVC call).

The alternate register set (AF, BC, DE, HL) is not used by the operating system.

Program Entry and Return Conditions

When a program executed from the @CMNDI SVC is entered, the system
return address is placed on the top of the stack. Register HL will point to the first
non-blank character following the command name. Register BC will point to the
first byte of the command line buffer.

Three methods of return from a program back to the system are available: the
@ABORT SVC, the @EXIT SVC, and the RET instruction. For application pro-
grams and utilities, the normal return method is the @EXIT SVC. If no error con-
dition is to be passed back; the HL register pair must contain a zero value. Any
non-zero value in HL causes an active JCL to abort.

The @ABORT SVC can be used as an error return back to the system; it auto-
matically aborts any active JCL processing. This is done by loading the value
X‘FFFF’ into the HL register pair and internally executing an @EXIT SVC.

If stack integrity is maintained, a RET instruction can be used since the system
return address is put on the stack by @CMNDI. This allows a return if the pro-
gram was called with @CMNDR.

Most of the SVCs in TRSDOS Version 6 set the Z flag when the operation spec-
ified was successful. When an operation fails or encounters an error, the Z flag
is reset (also known as NZ flag set) and a TRSDOS error code is placed in the
A register. The remaining SVCs use the Z/NZ flag in differing ways, so you
should refer to the description of the SVCs you are using to determine the exit
conditions.

227

Supervisor Calls

The TRSDOS Supervisor Calls are:

Keyboard SVCs Byte I/O SVCs
@KBD @CTL
@KEY @GET
@KEYIN @PUT

Printer and Video SVCs File Control SVCs
@DSP @CLOSE
@DSPLY @FEXT
@LOGER @FNAME
@LOGOT @FSPEC
@MSG @INIT
@PRT @REMOV
@PRINT @OPEN
@VDCTL @RENAM

Disk SVCs Disk File Handler SVCs
@DCINIT (@BKSP
@DCRES @CKEOF
@DCSTAT @LOC
@RDSEC @LOF
@RDSSC @PEOF
@RSLCT @POSN
@RSTOR @READ
@SEEK @REW
@SLCT @RREAD
@STEPI @RWRIT
@VRSEC @SEEKSC
@WRSEC @SKIP
@WRSSC @VER
@WRTRK @WEOF

@WRITE

System Control SVCs TRSDOS Task Control SVCs
@ABORT @ADTSK
@BREAK @CKTSK
@CMNDI @KLTSK
@CMNDR @RMTSK
@EXIT @RPTSK
@FLAGS
@HIGH$
@IPL
@LOAD
@RUN

Special Purpose Disk SVCs Special Overlay SVCs
@DIRRD @CKDRV
@DIRWR @DEBUG
@GTDCT @DODIR
@HDFMT @ERROR
@RDHDR @PARAM
@RDTRK @RAMDIR

228

@CKBRKC SVC Number 106
Check BREAK bit and clear it Version 6.2 only

Checks to see if the BREAK key has been pressed. If a BREAK condition exists,
@CKBRKC resets the break bit, Bit 0 of KFLAGS.

Entry Conditions:
A=106(X'6A")
Exit Conditions:

Success always.

If Z flag is set, the break bit was not detected. If NZ flag is set, the
break bit was detected and is cleared. If the BREAK key is being de-
pressed, the SVC will not return until the key is released.

General:
Only AF is altered by this SVC.

236.1

236.2 - “intentionally blank’

@CKDRV

SVC Number 33

Check Drive

Checks a drive reference to ensure that the drive is in the system and a
TRSDOS Version 6 or LDOS 5.1.3 (Model |1l Hard Disk Operating System) for-
matted disk is in place.

Entry Conditions:
A=33 (X21)
C=logical drive number (0-7)

Exit Conditions:
Success always.
If Z flag is set, the drive is ready.
If CF is set, the disk is write protected.
If NZ flag is set, the drive is not ready. The user may examine DCT + 0
to see if the drive is disabled.

Example:
See Sample Program D, lines 35-55.

237

@CKEOF SVC Number 62
Check for End-Of-File

Checks for the end of file at the current logical record number.

Entry Conditions:
A =62 (X'3E)
DE =pointer to the FCB of the file to check

Exit Conditions:
Success always.
If Z flag is set, LOC does not point at the end of file (LOC < LOF).
If NZ flag is set, test A for error number:
If A=X'1C; LOC points at the end of the file (LOC = LOF).
If A=X"1D; LOC points beyond the end of the file (LOC > LOF).
If A#+X1C’ or X'1D; then A = error number.

General:
Only AF is altered by this SVC.

Example:
See Sample Program C, lines 352-353.

238

@CKTSK SVC Number 28
~. Check if Task Slot in Use

Checks to see if the specified task slot is in use.

Entry Conditions:

A=28 (X'1C))

C=task slot to check (0-11)
Exit Conditions:

Success always.

If Z flag is set, the task slot is available for use.
If NZ flag is set, the task slot is already in use.

General:
AF and HL are altered by this SVC.

Example:
See Sample Program F, lines 70-73.

239

@CLOSE SVC Number 60

Close a File or Device

Terminates output to a file or device. Any unsaved data in the buffer area is
saved to disk and the directory is updated. All files that have been written to
must be closed, as well as all files opened with UPDATE or higher access.

If you remove a diskette containing an open file, any attempt to close the file
results in the message:

** CLOSE FAULT ** error message, <ENTER> to retry, <BREAK> to
abort

where error message is usually “Drive not ready”. You may put the diskette
back in the drive and:

1. Press (ENTER) to close the file.
2. Press (BREAK) to abort the close.

If you press (BREAK), the NZ flag is set and Register A contains X'20’, the error
code for an lllegal drive number error.

Entry Conditions:
A =60 (X'3C)
DE = pointer to FCB or DCB to close

Exit Conditions:
Success, Z flag set. The file or device was closed. The filespec (excluding
the password) or the devspec is returned to the FCB or DCB.
Failure, NZ flag set.
A=error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program C, lines 360-368.

240

@CLS SVC Number 105
Clear Video Screen Version 6.2 only

Clears the video screen by sending a Home Cursor (X‘1C’) and Clear to End of
Frame (X‘1F’) sequence to the video driver.

Entry Conditions:
A = 105(X'69’)
Exit Conditions:

Success, Z flag is set.
Failure, NZ is set.
A = error number

General:
Only AF is altered by this SVC.

240.1

240.2 - “intentionally blank”’

@CTL SVC Number 5
— Output a Control Byte

Outputs a control byte to a logical device. The DCB TYPE byte (DCB + 0, Bit 2)
must permit CTL operation. See the section “@CTL Interfacing to Device Driv-
ers” for information on which of the functions listed below are supported by the
system device drivers.

Entry Conditions:
A =5 (X'05)
DE =pointer to DCB to control output
C selects one of the following functions:
If C=0, the status of the specified device will be returned.
If C=1, the driver is requested to send a BREAK or force an interrupt.
If C=2, the initialization code of the driver is to be executed.
If C=3, all buffers in the driver are to be reset. This causes all pending
1/0 to be cleared.
If C =4, the wakeup vector for an interrupt-driven driver is specified by
the caller.

IY = address to vector when leaving driver. If IY =0, then
the wakeup vector function is disabled. The RS-232C
driver COM/DVR ($CL), is the only system driver that
provides wakeup vectoring.

If C=8, the next character to be read will be returned. This allows data
to be “previewed” before the actual @GET returns the character.

Exit Conditions:
fC=0,
Z flag set, device is ready
— NZ flag set, device is busy
A =status image, if applicable
Note: This is a hardware dependent image.
fC=1,
Success, Z flag set. BREAK or interrupt generated.
Failure, NZ flag set
A=error number
fC=2,
Success, Z flag set. Driver initialized.
Failure, NZ flag set
A=error number
fC=3,
Success, Z flag set. Buffers cleared.
Failure, NZ flag set.
A=error number
fC=4,
Success always.
IY = previous vector address
This function is ignored if the driver does not support wakeup
vectoring.
If C=8,
Success, Z flag set. Next character returned.
A =next character in buffer
Failure, NZ flag set. Test register A:
If A=0, no pending character is in buffer
If A+ 0, A contains error number. (TRSDOS driver returns Error 43.)

243

General:
BC, DE, HL, and IX are saved.
Function codes 5 to 7, 9 to 31, and 255 are reserved for the system. Function codes
32 to 254 are available for user definition.
Entry and exit conditions for user-defined functions are up to the design of the user-
supplied driver.

Example:
See the section “Device Driver and Filter Templates.’

244

@ERROR SVC Number 26

Entry to Post an Error Message

Provides an entry to post an error message. If bit 7 of register C is set, the error
message is displayed and return is made to the calling program. If bit 6 is not
set, the extended error message is displayed. Under versions prior to 6.2 the
error display is in the following format:
*#%% Errcod=xxs Error messade string **%
{filesrpec or devusrec:
Referenced at X’‘dddd’

Under Version 6.2 the error display is in the following format:

*% Error code = xxs Returns to X"dddd”

*#%¥ Error messade string

{filespecs devspecs» or orpen FCB/DCB status:
Last SUC = nnny Returned to X"rrrr’

dddd is the return address of the @ERROR SVC in the application program.
nnn is the last SVC executed before the @ERROR SVC request.
rrrr is the address the previous SVC returned to in the application program.

If bit 6 is set, then only the “Error message string” is displayed. This bit is
ignored if bit 6 of SFLAG$ (the extended error message bit) is set. If bit 6 of
CFLAGS$ is set, then no error message is displayed. If bit 7 of CFLAGS is set,
then the “Error message string” is placed in a user buffer pointed to by register
pair DE. See @FLAGS (SVC 101) for more information on SFLAG$ and
CFLAGS.

Entry Conditions:
A=26 (X'1A)
C=error number with bits 6 and 7 optionally set

Exit Conditions:
Success always.

General:
To avoid a looping condition that could result from the display device gen-
erating an error, do not check for errors after returning from @ERROR.
If you do not set bit 6 of register C, then you should execute this SVC only’
after an error has actually occurred.

Example:
See Sample Program C, lines 379-389.

259

@EXIT

SVC Number 22

Exit to TRSDOS

This is the normal program exit and return to TRSDOS. An error exit can be
done by placing a non-zero value in HL. Values 1 to 62 indicate a primary error
as described in TRSDOS Error Codes (Appendix A). (A non-zero value in HL
causes an active JCL to abort.)

Entry Conditions:
A =22 (X'16)
HL = Return Code
If HL =0, then no error on exit.
If HL # 0, then the @ABORT SVC returns X'FFFF’ in HL automatically.

General:
This SVC does not return.

Example:
See Sample Program B, lines 206-207.

260

@FEXT SVC Number 79
Set Up Default File Extension

Inserts a default file extension into the File Control Block if the file specification
entered contains no extension. @FEXT must be done before the file is opened.

Entry Conditions:
A =79 (X'4F)
DE=pointer to FCB
HL =pointer to default extension (3 characters; alphabetic characters
must be upper case and first character must be a letter)

Exit Conditions:
Success always.
AF and BC are altered by this SVC.
If the default extension is used, HL is also altered.

Example:
See Sample Program C, lines 111-132.

261

@FLAGS SVC Number 101

Point IY to System Flag Table

Points the IY register to the base of the system flag table. The status flags listed
below can be referenced off IY. You can alter those bits marked with an asterisk
(*). Bits without an asterisk are indicators of current conditions, or are unused
or reserved.

Note: You may wish to save KFLAG$ and SFLAG$ if you intend to modify them
in your program, and restore them on exit.

Entry Conditions:
A=101 (X'65’)

Exit Conditions:
Success always.
IY = pointer to the following system information:
IY—-1 Contains the overlay request number of the last system module
resident in the system overlay region.
IY+0 = AFLAGS$ (allocation flag under Version 6.2 only)
Contains the starting cylinder number to be used when
searching for free space on a diskette. It is normally 1.
If the starting cylinder number is larger than the number
of cylinders for a particular drive, 1 is used for that drive.
IY+2 =CFLAG$
*bit7 —If set, then @ERROR will transfer the “Error message
string” to your buffer instead of displaying it. The mes-
sage is terminated with X‘'0D.’

*bit6 — If set, do not display system error messages 0-62. See
@ERROR (SVC 26) for more information.
*bit5 — If set, sysgen is not allowed.
*bit4 — If set, then @CMNDR will execute only system library
commands.
bit3 —If set, @RUN is requested from either the SET or
SYSTEM (DRIVER =) commands.
bit2 —If set, @KEYIN is executing due to a request from
SYS1.
bit1 —If set, @CMNDR is executing. This bit is reset by
@EXIT and @CMNDI.
*bit@ —If set, HIGH$ cannot be changed using @HIGH$

(SVC 100). This bit is reset by @EXIT and @CMNDI.
IY+3 =DFLAGS$ (device flag)
bit7 —"1” if GRAPHIC printer capability desired on screen
print (CONTROD () causes screen print. See the SYS-
TEM (GRAPHIC) command under “Technical Infor-
mation on TRSDOS Commands and Utilities.’)

bité6 — “1” if KSM module is resident

bit5 — Currently unused

bit4 — “1”if MemDisk active

bit3 — Reserved

bit2 — “1”if Disk Verify is enabled
*bit1 — “1”if TYPE-AHEAD is active

bitd — “1”if SPOOL is active

IY +4 =EFLAGS$ (ECI flag under Version 6.2 only)
Indicates the presence of an ECI program. If any of the
bits are set, an ECl is used, rather than the SYS1 inter-
preter. The ECI program may use these bits as necce-
sary. However, at least one bit must be set or the ECl is
not executed.

262

IY+5 =FEMSK$ (mask for port OFEH)
IlY+8 =IFLAG$ (international flag)

*bit7 — If "1, 7-bit printer filter is active
If “0;” normal 8-bit filters are present
*bit6é —If “1) international character translation will be per-

formed by printer driver
If “0,” characters received by printer driver will be sent
to the printer unchanged

bit5 — Reserved for future languages

bit4 — Reserved for future languages

bit3 — Reserved for future languages

bit2 — Reserved for future languages

bit1 —If “1; German version of TRSDOS is present
bitd — If “1; French version of TRSDOS is present

If bits 5-0 are all zero, then USA version of TRSDOS is present.
IY +10 =KFLAG$ (keyboard flag)

bit7 — “17if a character is present in the type-ahead buffer
bit6 — Currently unused
*bit5 — “17if CAPS lock is set
bit4 — Currently unused
bit3 — Currently unused
*bit2 —“17if has been pressed
*bit1 —"17if has been pressed (PAUSE)
*bit@ —“1"if has been pressed

Note: To use bits 0-2, you must first reset them and then test to
see if they become set.

IY +12=MODOUT (image of port 0ECH)

IY + 13=NFLAGS$ (network flag under Version 6.2)

bit7 — Reserved for system use.
bit6 — If set, the application program is in the task processor.
Programmers must not modify this bit.
bit5 — Reserved for system use.
bit4 — Reserved for system use.
bit3 — Reserved for system use.
bit2 — Reserved for system use.
bit1 — Reserved for system use.
*bit0 — If set, the “file open bit” is written to the directory.

IY + 14=0OPREG$ (memory management & video control image)
IY +17=RFLAGS (retry flag under Version 6.2 only)
Indicates the number of retrys for the floppy disk driver.
This should be an even number larger than two.
IY +18 =SFLAGS$ (system flag)
bit7 —*“1”if DEBUG is to be turned on
*bité — 1" if extended error messages desired (see
@ERROR for message format); overrides the setting
of bit 6 of register C on @ERROR (SVC 26) and
should be used only when testing

bit5 — “1”if DO commands are being executed
*bit4 —“1”if BREAK disabled
bit3 —“1”if the hardware is running at 4 mhz (SYSTEM

(FAST)). If “0,’ the hardware is running at 2 mhz (SYS-
TEM (SLOW)).

*bit2 — “17if LOAD called from RUN
*bit1 — “17if running an EXECute only file
*bit@ — “1” specifies no check for matching LRL on file open

and do not set file open bit in directory. This bit should
be set just before executing an @OPEN (SVC 59) if
you want to force the opened file to be READ only dur-
ing current I/O operations. As soon as either call is
executed, SFLAGS bit 0 is reset. If you want to disable
LRL checking on another file, you must set SFLAG$
bit @ again.

263

IY +19=TFLAGS (type flag under Version 6.2 only) -
Identifies the Radio Shack hardware model. TFLAG$
allows programs to be aware of the hardware environ-
ment and the character sets available for the display.
Current assignments are:

2 indicates Model l|
4 indicates Model 4
5 indicates Model 4P
12 indicates Model 12
IY +20=UFLAG$ (user flag under Version 6.2 only)
May be set by application programs and is sysgened

properly.
IY +21 =VFLAGS
bit7 — Reserved for system use
*bit6 — “1” selects solid cursor, “0” selects blinking cursor
bit5 — Reserved for system use
*bit4 — “1”if real time clock is displayed on the screen

bits 0-3 — Reserved for system use

IY +22 =WRINTMASK$ (mask for WRINTMASK port)

IY +26 =SVCTABPTR$ (pointer to the high order byte of the SVC table
address; low order byte = 00)

IY +27 = Version ID byte (60H=TRSDOS version 6.0.x.x,

61H=TRSDOS version 6.1.x.x, etc.)
IY —47 = Operating system release number. Provides a third and fourth
character (12H=TRSDOS version x.x.1.2)

Y +28

to

1Y + 30 = @ICNFG vector

1Y +31

to

1Y +33 = @KITSK vector

263.1

@FNAME

SVC Number 80

Get Filename

Gets the filename and extension from the directory using the specified Direc-
tory Entry Code (DEC) for the file.

Entry Conditions:
A =80 (X'50")
DE =pointer to 15-byte buffer to receive filename/extension:drive, fol-
lowed by a X‘0D’ as a terminator
B =DEC of desired file
C =logical drive number of drive containing file (0-7)

Exit Conditions:
Success, Z flag set.
HL = pointer to directory entry specified by register B
Failure, NZ flag set.
A =error number
HL is altered.

General:

AF and BC are always altered.

If the drive does not contain a disk, this SVC may hang indefinitely waiting
for formatted media to be placed in the drive. The programmer should
perform a @CKDRYV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may
return with the Z flag set and HL pointing to a random address. Care
should be taken to avoid using the wrong value for the DEC in this call.

Example:
See Sample Program C, lines 274-286.

264

264.1 - “intentionally blank’’

@VDCTL SVC Number 15

Video Functions

Performs various functions related to the video display. The B register is used
to pass the function number.

Entry Conditions:
A=15 (X'0F)
B selects one of the following functions:
If B=1, return the character at the screen position specified by HL.
H=row on the screen (0-23), where 0 is the top row
L =column on the screen (0-79), where 0 is the leftmost column

If B=2, display the specified character at the position specified by
HL

C= chéracter to be displayed
H=row on the screen (0-23), where 0 is the top row
L =column on the screen (0-79), where 0 is the leftmost column

If B=3, move the cursor to the position specified by HL. This is done
even if the cursor is not currently displayed.
H=row on the screen (0-23), where 0 is the top row
L =column on the screen (0-79), where 0 is the leftmost column

If B=4, return the current position of the cursor.

If B=5, move a 1920-byte block of data to video memory.
HL = pointer to 1920-byte buffer to move to video memory

If B=6, move a 1920-byte block of data from video memory to a
buffer you supply. In 40 line by 24 character mode, there must
be a character in each alternating byte for proper display.

HL = pointer to 1920-byte buffer to store copy of video memory HL
must be in the range X'23FF’ < HL < X'ECO01.

If B =7, scroll protect the specified number of lines from the top of the
screen.
C=number of lines to scroll protect (0-7). Once set, scroll protect
can be removed only by executing @VDCTL with B=7 and
C =0, or by resetting the system. Clearing the screen with
erases the data in the scroll protect area, but the
scroll protect still exists.

If B =8, change cursor character to specified character. If the cursor
is currently not displayed, the character is accepted anyway
and is used as the cursor character when it is turned back on.
The default cursor character is an underscore (X'5F’) under
Version 6.2 and a X'B@’ under previous versions.

C=character to use as the cursor character

If B=9, (under Version 6.2 only) transfer 80 characters to or from
the screen.
If C=0, move characters from the buffer to the screen
If C=1, move characters from the screen to the buffer
H=row on the screen
DE = pointer to 80 byte buffer

Note: The video RAM area in the Models 4 and 4P is 2048 bytes (2K).
The first 1920 bytes can be displayed. The remaining bytes contain the
type-ahead buffer and other system buffers.

321

Exit Conditions:
fB=1:
Success, Z flag set.
A = character found at the location specified by HL
DE is altered.
Failure, NZ flag set.
A =error number

fB=2:
Success, Z flag set.
DE is altered.
Failure, NZ flag set.
A=error number

fB=3:
Success, Z flag set.
DE and HL are altered.
Failure, NZ flag set.
A=error number

if B=4:
Success always.
HL =row and column position of the cursor. H=row on the
screen (0-23), where 0 is the top row; L= column on the
* screen (0-79), where 0 is the leftmost column.

If B=5:
Success always.
HL = pointer to the last byte moved to the video + 1
BC and DE are altered.

lf B=6:
Success always.
BC, DE, and HL are altered.

fB=7:
Success always.
BC and DE are altered.

If B=8:
Success always.
A = previous cursor character
DE is altered.

If B=9 (under Version 6.2 only):
Success, Z flag set.
BC, HL, DE are altered.
Failure, NZ flag set because H is out of range.
A= error code 43 (X'2B’).

General:
Functions 5, 6, and 7 do not do range checking on the entry parameters.
If HL is not in the valid range in functions 5 and 6, the results may be
unpredictable.
Only function 3 (B =3) moves the cursor.
If C is greater than 7 in function 7, it is treated as modulo 8.
AF and B are altered by this SVC.

Example:
See Sample Program F, lines 304-327.

322

Sample Program B, continued

28272 ;These are the storage declarations.

299273

#9274 BUF6: DEFS 6

p@275 BUF5 DEFS 5

p9276 BUF4: DEFS 4

209277 BUF3: DEFS 3

29278 BUF2: DEFS 2

29279 DIVRI: DEFB 2

20289 DIVD1: DEFB 2

20281 ANS1: DEFB 2

29282 REM1: DEFB ')

#0283 MCAND1: DEFB 2

g@9284 MIERl1: DEFB 2

p@285 MCAND2: DEFW 2

g9286 DIVD2: DEFW ')

29287 ANS2: DEFW)

29288

#9289 ;Below are messages and prompting text used in the program.
#9299

#9291 DEFB 13 ;Number of blanks to print after message 1
29292 MESS1l: DEFM 'Enter a number (1-255).'

#9293 DEFB 3 ;Message-terminating character
209294 DEFB 21 ;Number of blanks to print after message 3
29295 MESS3: DEFM 'The answer is'

209296 DEFB 3 ;Terminating character
23297 DEFB 18 ;Blanks after message
29298 MESS4: DEFM 'The remainder is'

p29299 DEFB 3 ;Terminating character
293989 DEFB 6 ;Blanks after message
29391 MESS6: DEFM 'Enter a number (4369-65535)."

#9392 DEFB 3 ;Terminating character
g@393 DEFB 15 ;Blanks after message
P34 MESS8: DEFM 'Enter a number (1-28).'

g9385 DEFB 3 ;Terminating character
ga396 DEFB 16 ;Blanks after message
28397 MESS9: DEFM 'In hex ASCII, that is'

ga398 DEFB 3 ;Terminating character
#3989 DEFB 17 ;Blanks after message
#9310 MESS1@: DEFM '"Enter a number (1-9).°'

g@311 DEFB 3 ;Terminating character
g@312 DEFB 11 ;Blanks after message
g@313 MESS1l: DEFM '"Enter a number (1-418g)."

g@314 DEFB 3 ;Terminating character
#9315 DEFB 15 ;Blanks after message
gg31e MESS12: DEFM 'Enter a number (1-15).°

#9317 DEFB 3 ;Terminating character
29318 MESS13: DEFM '"The product of those 2 numbers is '
#9319 DEFB 3 ;Terminating character
g@328 MESS14: DEFM 'Press <BREAK> to end or any other key to continue.'
gg321 DEFB @DH ;Terminating character
29322

#9323 END START

343

Ln #

pEggL
go992
po993
pP994
goIPS
pogg6
#0998
poBA9
#9919
#9911
p9@12
pog13
#9914
gPP15
gog16
89917
#9918
#9919
pog2g
ggg21
pgeg22
peP23
p9924
pog25
p9926
pea27
p9928
#9929
po@g38
g9P31
p9P32
#9933
go@g34
gP@35
99936
p9937
p9938
#9939
po949
g4l
gag42
#9943
pog44
p@@4s
pog46
po@4a7
gog48
#PP49
J/§0§' 15}
#9951
#9952
#9953
29954
#9955
#9956
#9957
po958
#9959
pog6s
pogel
pog62
#9963
#9064
#9965
pog66
po967

~e ~eo wo ~o

.
’

.
’

QCLOSE:
@DIRRD:
@DSP:
@DSPLY:
@ERROR:
@EXIT:
@FEXT:
@FNAME :
@FSPEC:
@HEXDEC :
@INIT:
@KBD:
@KEYIN:
QLOC :
@OPEN:
@READ:
@REMOV:
@QVER:

~e

BEGIN:

~e

~e

~

Sample Program C

Source Line

This program prompts for two filenames, opens the first

file, and creates the second. Then the data in the first
file is copied to the second file. While the Copy progresses,
the current record number is displayed in parentheses.

PSECT 3999H ;This program starts at x'3g¢gg’

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes the program easier to follow.

EQU 60 ;Close a file or device

EQU 87 ;Read a directory record

EQU 2 ;Display character at cursor

EQU 14 ;Display a message

EQU 26 ;Display an error message

EQU 22 ;Exit and return to TRSDOS or the caller
EQU 79 ;Add a default file extension

EQU 8g ;Fetch a filespec from the directory

EQU 78 ;Verify and load a filespec into the FCB
EQU 97 ;Convert a binary value to decimal ASCII
EQU 58 ;Open an existing file or create a new file
EQU 8 ;Scan the keyboard for a character

EQU 9 ;Accept a line of text from the *KI device
EQU 63 ;Return the current logical record number
EQU 59 ;Open an existing file

EQU 67 ;Read a record from an open file

EQU 57 ;Delete a file from disk

EQU 73 ;Write a record to disk. Does the same thing

;as @WRITE (Svc 75), but it also makes sure
_;the written data is readable.

First, prompt for the source filespec using the @DSPLY svc.

LD HL,MESG1 ;Get the first message
LD A,@DSPLY ;Display a line on the screen
RST 28H ;Call the @DSPLY svc

Now, read the filename from the keyboard using the @KEYIN svc.

LD HL,FILEl ;Put the name of the 1lst file here
LD B, 24 ;Allow up to 24 characters

LD c,? ;A zero is required by the svc

LD A,@KEYIN ;Get a filename from the user

RST 28H ;Call the QKEYIN svc

JP C,QUIT ;The user pressed <Break>

JP NZ, ERR sAn Error occurred

LD A,B ;Get the number of characters

OR A ;See if that value was zero

JR Z,BEGIN ;Nothing was entered, ask again

The user has typed something, so it must be checked for validity
using the @FSPEC svc.

LD HL,FILEl ;Point at the text the user entered
LD DE,FCB1 ;Point at the File Control Block
;that is to be used for the source file.
LD A,@FSPEC ;The @QFSPEC svc will make sure the filename

;that is in buffer named "filel" is valid.
;If it is, it is copied into the File
;Control Block (FCB) to be used by the @OPEN
;or @INIT svc later on.

RST 28H ;Call the @FSPEC svc

JR Z ,ASK2 ;The name for file 1 is ok, so skip this

At this point the filename specified for file 1 has been found

344

#9339
gg34g
@341
#9342
#9343
#9344
p2@345
#9346
#9347
g9348
gg349
99359
gg351
gg352
#8353
g@354
g@355
g@356
gg357
gg358
#9359
ga360
gg36l
gg362
#8363
gg364
gg365
#3366
gg367
#9368
#9369
#9378
gg371
#8372
#@373
#9374
#9375
ga376
28377
#9378
#9379
gpg38g
gg38l
g@382
#9383
gg384
#9385
g@386
gg387
gp388
gg389
g@39g0
gg391
#9392
#g393
#9394
g9¥395
g9396
28397
gp398
#8399
gg4pp
ggagl
ggag2
goag3
ggag4
ggags

~e ~eo

EOF:

~e ~eo

EOFYES:

QUIT:

~e

ERR:

SPACES:
ARROW:

OK:

MESG1:

MESG2:

FEXST:

LD
LD

RST
JR

JR

Sample Program C, continued

HL,BUFFER

A,@VER

28H
NZ,ERR

LOOP

;Point at the data read from file 1
;Write a record to the target file
;The @VER does the same thing as the
;@WRITE svc, only it also checks the
;data to make sure it is readable.
;Call the Q@QVER svc

;An error occurred on write; possibly
;the disk is full.

;Loop until an error occurs.

This code checks the error to make sure it was an end of file
condition and, if so, closes the source & target files.

CP
JR
CP
JR

28
Z,EOFYES
29
NZ,ERR

;Was it an end of file encountered?
:Yes, close the file

;Was it "Record number out of range"?
;No, must be some other error

It is possible to get Error 29 if the file being copied has
an EOF that is not a multiple of the file's LRL

LD
LD
RST
JR

LD
LD
RST
JR

LD
LD
RST

LD
RST

DE, FCB1
A,@CLOSE
28H
NZ,ERR

DE,FCB2
A,@CLOSE
28H

NZ, ERR

HL,OK
A,@DSPLY
28H

A,Q@EXIT
28H

;Point at file 1 (source file)
:Close the file

;Call the @CLOSE svc

;An error occurred, abort

;Point at file 2 (target file)
;Close it also

;Call the QCLOSE svc

;An error occurred, abort

;Print a message saying the copy is done
;Call the @DSPLY svc

;Exit to TRSDOS or the calling program
;Call the QEXIT svc

The QEXIT svc does not return.

OR

LD
LD
RST

Because
Storage

DEFM
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB

g4agH

C,A
A, @ERROR
28H

;Turn on bit 6, which

;will cause the Q@ERROR svc to print
;the short error message. Bit 7

;is not set, which instructs the @ERROR
;to abort this program and return to

; TRSDOS Ready.

;Put error code & flags in register C
;Call the system error displayer

;Call the @ERROR svc

bit 7 is not set, the @ERROR svc will not return.

Declaration

=> '

w =-w -

19%25
'[Ok]!
@DH

;ASCII Space char.for display formatting
;Arrow for display shows data direction
;Advance cursor 1§ spaces without erasing

;Used to indicate. the Copy is complete
;Terminated with an <Enter>

'Copy Filespec >'

3

'To Filespec >'

3

'Destination File Already Exists - Ok to Delete it (Y/N) ?'

3

349

ggage
ggag7
ggags
gg4ag9
gga1g
gga1l
gga12
#9413
ggala
ggals
ggale
gga17
gga1s
gga19
ggaz2g
gga21
gga22
gg4a23
gga24

BADFIL:

LOCMSG:

FILEl:
FILE2:
FCB1:
FCB2:
COPY:
LRL:

BUF1:
BUF2:
BUFFER:

DEFM
DEFB
DEFM

DEFB
DEFB

DEFS
DEFS
DEFS
DEFS
DEFS
DEFB

DEFS
DEFS
DEFS

END

Sample Program C, continued

'Invalid Filename - Try Again'

@DH
' 12345)"

7%24
3

32
32
32
32
32
8

256
256
256

BEGIN

;This will be used in building the LOC
;Display will appear as (d) to (ddddd).
;Backspace without erasing

;Etx, used to get the @DSPLY svc to stop

;User Text Originally placed here

;Target Filename goes here

;32 bytes for the File Control Block

;32 bytes for the File Control Block

;An extra copy of the target FCB goes here
;The Logical Record Length of the source
;file will be stored here

;System buffer for File 1

;System buffer for File 2

;Data buffer for both files

;"begin" is the starting address

350

#9313
#9314
#9315
gg31e6
#9317
#9318
99319
g@32g0
gg321
#9322
g@323
99324
#9325
#9326
#9327
g@328
#9329

OR

RET
PUSH
PUSH
PUSH
LD
LD
RST
POP
POP
POP
INC
INC
JR

MODEND: END

Sample Program F, continued

A

Z

HL

DE

BC
C,A
A,@VDCTL
28H
BC

DE

HL

L

DE
TSKLP

BEGIN

;Is it time to stop putting this on
;the display?

;Yes, return to the caller

;Save the registers, as the SVC will
;alter the contents

;Put the character here

;Put character on screen at specified position
;Call the @QVDCTL svc

;Restore registers

;Advance display position
;Point to next character to display
;Loop till date is completely displayed

;End of task and main program

359

goga1
soga2
89993
go094
so995
p9396
g9897
pogg8
#8999
gog19
#9911
gog12
#9913
29914
29915
#gg1e
99817
ggg18
#9919
pog29
ggg21
ggg22
p9g23
pop24
#9@25
ggg26
g8e@27
pgg28
#9929
ggg3g
ggg31
ggg32
ggd33
poP34
29935
#9936
gag37
gag38
po@39
gggag
g4l
gog42
ggg43
gogaa
ggg4as
ggg4a6
gop47
ggp48
997349
pegsg
#ggs51
gggs2
2953
#9954
#9855
ggpgse
#9957
#gg@s8
#8359
goged
gogel
ggg62
ggg63
#od64
ggge6s
god66
gage7
ggges

O N Ne N Ne Ne Ne e we Ne N6 we “e ~e

~e No No Ne ~o

Ne No Ne Ne we we

~e No Ne Ne Ne we e o

~e ~e

~e wo we we

~e ~o weo

* e ~o

@EXIT:

@DSPLY:
@FLAGS:
@DODIR:
@KEYIN:
@CMNDI:

~e Ne ~e wo ~o

Sample Program G

This program is a sample Extended Command Interpreter. You
may make the ECI as large or small as you require. You may
use allof main memory, or you can restrict yourself to the
system overlay area (x'26@8@' to x'2FFF').

To pass a command to the normal system interpreter for
processing, use the @CMNDI svc. TRSDOS executes the command
and reloads the ECI. If you want to have multiple entry
points, Bits 2 - @ in EFLAGS$ are in Register A on entry

(in Bits 6 - 4),or you may read EFLAGS$ yourself.

EFLAGS is totally dedicated to the ECI, and may contain any
non-zero value. If EFLAGS contains a zero, TRSDOS uses its
own interpreter. Other programs that want to activate an ECI,
should set the EFLAG$ to a non-zero value and execute a Q@EXIT
svc.

To install an ECI, use the command:

COPY filename SYS13/SYS.LSIDOS:d (C=N)
If you omit the C=N option, the SY¥S13 file loses it's "SYS"
status and you will receive 'Error f7' messages when you try
to use it as a ECI.

When SYS1 (the normal command interpreter) has completed it's
normal housekeeping and is about to display the "TRSDOS Ready"
prompt, it checks EFLAGS. If EFLAGS$ contains a non-zero
value, TRSDOS loads and executes the Extended Command
Interpreter.

To execute this program, type <*><Enter>.

This program checks EFLAGS$ to see if it is zero. If so, it
sets it to a non-zero value. This causes this program to be
used instead of the normal interpreter when you execute an
@EXIT or QABORT SVC. (QCMNDI and @CMNDR invoke the TRSDOS
interpreter.) If EFLAGS is non-zero, the ECI displays a few
prompts and the names of all visible /CMD files on logical
Drive #.

The operator may then type the name of a program to execute.

If you press <Break>, this program sets EFLAGS to @, executes
an @EXIT SVC and returns to TRSDOS Ready.

By pressing a number, # through 7, you can specify the drive
that TRSDOS searches. This program stores this value in
EFLAGS. Each time this program is invoked, it reads the value
from EFLAGS$ and uses that drive.

Note that if a drive is not enabled, not formatted, doesn't
exist, or contains no visible /CMD files, this program
redisplays the prompt.

PRINT SHORT , NOMAC

PSECT 3gg9H ;This program starts at x'3ggg’
Declare the equates for the SVCs used.

This is not mandatory, but it makes the program easier to
follow.

EQU 22 ;Exit and return to TRSDOS

EQU 19 ;Display a string

EQU 191 ;Locate the system flag area

EQU 34 ;Get the names of filenames

EQU 9 ;Accept a command and allow editing
EQU 24 ;Execute a command (using SYS1)

On entry, determine if EFLAGS is set to zero or not. If it

is set to zero, this program is being started by typing
PROGRAM<Enter> or <*><Enter>. In that case, set EFLAGS$ to a
non-zero value so that in future, TRSDOS uses this interpreter
instead of it's own.

360

#9969
pos78
#9971
peg72
area

#9973
pgg74
#9975
#gg76
gee77
ggg78
gea79
gogsg
pgggsl
ggp82
ggg83
gggsa
APE8s
gpp8e
#9987
ggpss
gpp89
gog9g
ggg91
ggga2
ggg93
#9994
ggg9s
gog9e
#9897
ggg9s8
#9999
20189
go1g1
#9192

po184
#9105

~e we

BEGIN:

~e we

ECIRUN:
ECIGO:

~e

~e

ASK:

Ne Ne we we Se ~o

Sample Program G, continued

If EFLAGS is non-zero, this initialization has already been
done and can be skipped.

LD A,Q@FLAGS ;Get the starting address of the flag

RST 28H ;Call the @FLAGS svc

LD A, (1IY+4) ;Read the EFLAG$ (ECI flag)

OR A ;Is it set to zero?

JR NZ,ECIRUN ;Run the ECI

LD A,8 ;Get a non-zero value. The value
;needs to be a non-zero value that
;does not set Bits #, 1 or 2. The
;default drive # is kept in these bits.

LD (IY+4),A ;Set the EFLAGS to a non-zero value

LD HL, PROMPT ;Explain how this works

JR ECIGO ;Display message

When the system is about to display

TRSDOS Ready,

it executes this code instead.

LD HL, SPROMPT ;Point at the prompt to use

LD A,@DSPLY ;Display the prompt

RST 28H ;Call the @DSPLY svc

Display the names of all /CMD files

LD A, (IY+4) ;Get the EFLAGS

AND 7 ;Delete all but the drive number field
LD c,A ;Store the drive number for the svc
LD A,@DODIR ;Do a directory display

LD B,2 ;Display visible, non-system files
LD HL ,CMDTXT ;that match "CMD" (stored at CMDTXT)
RST 28H ;Call the @DODIR svc

Prompt for a filename or a function key.

LD HL, BUFFER ;Point at text buffer

LD B,9 ;Allow up to 8 characters and <Enter>

LD C,# ;Required by the svc

LD A,@KEYIN ;Input text with edit capability

RST 28H ;Call the @KEYIN svc

JR C,QUIT ;The carry flag is set when the
;operator presses <BREAK>. Zero the
;EFLAGS and exit to TRSDOS

LD HL,BUFFER ;Point at the start of the buffer

LD A, (HL) ;Get the character

CP @DH ;Did they type anything?

JR Z,ASK ;No, just repeat the prompt.
;If you want to redisplay the
;directory, change "ASK" to "ECIRUN".

SUB g ;Convert value to binary

CP 7+1 ;Is the character a g# - 7?2

JR NC, NAME ;Must be a filename

The operator has typed 1 or more characters that start with

a number. This program assumes that the operator is defining
a new drive number and stores this value in EFLAGS for

future use. TRSDOS does not alter this value.

The next time this program is run, EFLAGS contains the

same value and this program knows what drive to scan.

LD
LD

B,A
A, (IY+4)

;Save the drive number
;Get the EFLAGS

360.1

#8137
gg138
#9139
gg1ag
gg141
g9142
gg143
p@144
#9145
ggl46
#9147
f@148
#9149
#9159
gg151
#g152
28153
#g154
#3155
#P156
gg157
gg158
#9159
#9169
gglel
#9162
@d163
g@l1e4-

1O~ ~e
(@]
H
=

~e Ne Ne we e

NAME :
FDIV:

EFLAGS.

gg165
gglee
gg167
gg1e8
#@169
#1779
#9171
#g172
#9173
#9174
#9175
p#g176
29177
#9178
#3179
#9179
gg18g
gg181
79182
gg183
#9184
29185
#9186
g9187
gg188
#9189
gg1og
#9191

g@g192
#9193

#9194
#9195
#9196
#9197

#9198
#9199
gg200

~e ~e

FOUND:

-
’

PROMPT:

SPROMPT:

Sample Program G, continued

AND 8 ;Delete the o0ld drive number
OR B ;Insert the new drive number
LD (IY+4) ,A ;Save that value for future use ™
JR ECIRUN ;Scan the new drive
The operator pressed <Break>. Turn off the ECI and return to
TRSDOS.
XOR A ;Get a zero
LD (IY+4) ,A ;Set EFLAGS to zero
LD HL, EPROMPT ;Point at the shutdown message
LD A,@DSPLY ;And acknowledge the <Break>
RST 28H ;Call the @DSPLY svc
LD A,@EXIT ;Return to TRSDOS Ready
RST 28H ;Call the @EXIT svc
The operator entered what might be a filename or a library
command. Pass it to TRSDOS for processing. If there is an
error, TRSDOS is responsible for determining what the error is
and printing a message.
(HL already points at the start of the buffer.)
LD A, #DH ;Look for this character
CPp (HL) ;In the command
JR Z, FOUND ;Found the end of the filename
INC HL ;Move character to next byte
JR FDIV ;Find the divider (in this case, a @DH)
Found the end of a filename, and add the drive number from
Note that this program may not work properly if the operator
supplies a drive number as part of the filename.
LD (HL),':" ;Add a drive number to the filename
INC HL ;Advance the pointer to the next byte P
LD A, (IY+4) ;Get the EFLAGS value
AND 7 ;Delete all but the drive number
ADD A, '@ ;Convert the binary value to ASCII
LD (HL) ,A ;Add that to the filename
INC HL ;Advance the pointer to the next byte
LD (HL) , #DH ;Write a terminator on the end
LD HL, BUFFER ;Point at the text entered
LD A,@CMNDI ;Execute the command, but do not
;return. Since this program is the
command processor at this time,TRSDOS
;returns control to the beginning of
;this module after executing the
;command.
RST 28H ;Call the @CMNDI svc
Messages and text storage
DEFM '[Extended Command Interpreter Is Now Operationall'’
DEFB AAH
DEFB gaH
DEFM 'Press <BREAK> to use the normal interpreter,'
DEFB #gAH
DEFM 'type <Number><ENTER> to change the default drive
number, '
DEFB #aH
DEFM 'or type the name of the program to run and press
<ENTER>'
DEFB A DH ;Terminate the display
DEFB #AH
DEFM '[ECI On] <BREAK> to abort, n<ENTER> for new drive or
type:' o~
DEFM ' program<ENTER>'
DEFB ADH ;Terminate the message

360.2

gg2g1
gg202
#9203
g9204
gg205
9206
#9287

EPROMPT:

CMDTXT:
BUFFER:

DEFM
DEFB

DEFM
DEFS

END

Sample Program G, continued

'[Extended Command Interpreter. Is Now Disabledl]'

@DH

'CMD'
11

BEGIN

;Allow for filename, drivespec and @DH

;"BEGIN" is the starting address

360.3

HIT read error (Error 22, X‘16’°)

A disk error occurred during the reading of the Hash Index Table. The problem
may be media, hardware, or program failure. Move the diskette to another drive
and try the operation again.

HIT write error (Error 23, X‘17°)

A disk error occurred during the writing of the Hash Index Table. The HIT may
no longer be reliable. If the problem recurs, use a different drive or different
diskette.

lllegal access attempted to protected file (Error 37, X‘25’)

The USER password was given for access to a file, but the requested access
required the OWNER password. (See the ATTRIB library command in your
Disk System Owner’s Manual.)

lllegal drive number (Error 32, X‘20’)

The specified disk drive is not included in your system or is not ready for access
(no diskette, non-TRSDOS diskette, drive door open, and so on). See the
DEVICE command in your Disk System Owner’s Manual.)

lllegal file name (Error 19, X‘13’)

The specified filespec does not meet TRSDOS filespec requirements. See your
Disk System Owner’s Manual for proper filespec syntax.

lllegal logical file number (Error 16, X‘10’)

A bad Directory Entry Code (DEC) was found in the File Control Block (FCB).
This usually indicates that your program has altered the FCB improperly. Check
for an error in your application program.

Load file format error (Error 34, X'22’)

An attempt was made to load a file that cannot be loaded by the system loader.
The file was probably a data file or a BASIC program file.

Lost data during read (Error 3, X‘03’)

During a sector read, the CPU did not accept a byte from the Floppy Disk Con-
troller (FDC) data register in the time allotted. The byte was lost. This may indi-
cate a hardware problem with the drive. Move the diskette to another drive and
try again. If the error recurs, try another diskette.

Lost data during write (Error 11, X‘0B’)

During a sector write, the CPU did not transfer a byte to the Floppy Disk Con-
troller (FDC) in the time allotted. The byte was lost; it was not transferred to the
disk. This may indicate a hardware problem with the drive. Move the diskette to
another drive and try again. If the error recurs, try another diskette.

LRL open fault (Error 42, X‘'2A’)

The logical record length specified when the file was opened is different than
the LRL used when the file was created. COPY the file to another file that has
the specified LRL.

No device space available (Error 33, X‘27’)

You tried to SET a driver or filter and all of the Device Control Blocks were in
use. Use the DEVICE command to see if any non-system devices can be
removed to provide more space. This error also occurs on a “global” request to
initialize a new file (that is, no drive was specified), if no file can be created.

No directory space available (Error 26, X‘1A)

You tried to open a new file and no space was left in the directory. Use a differ-
ent disk or REMOVE some files that you no longer need.

367

No error (Error 0)

The @ERROR supervisor call was called without any error condition being
detected. A return code of zero indicates no error. Check for an error in your
application program.

Parameter error (Error 44,X‘2C’)

(Under Version 6.2 only) An error occurred while executing a command line or
utility because a parameter that does not exist was specified. Check the spell-
ing of the parameter name, value, or abbreviation.

Parity error during header read (Error 1, X‘071’)

During a sector 1/O request, the system could not read the sector header suc-
cessfully. If this error occurs repeatedly, the problem is probably media or hard-
ware failure. Try the operation again, using a different drive or diskette.

Parity error during header write (Error 9, X‘09’)

During a sector write, the system could not write the sector header satisfactor-
ily. If this error occurs repeatedly, the problem is probably media or hardware
failure. Try the operation again, using a different drive or diskette.

Parity error during read (Error 4, X‘04’)

An error occurred during a sector read. lts probable cause is media failure or a
dirty or faulty disk drive. Try the operation again, using a different drive or
diskette.

Parity error during write (Error 12, X‘0C’)

An error occurred during a sector write operation. lts probable cause is media
failure or a dirty or faulty disk drive. Try the operation again, using a different
drive or diskette.

Program not found (Error 31, X‘1F’)

The file cannot be loaded because it is not in the directory. Either the filespec
was misspelled or the disk that contains the file was not loaded.

Protected system device (Error 40, X‘28’)

You cannot REMOVE any of the following devices: *KI, *DO, *PR, *JL, *SI, *SO.
If you try, you get this error message.

Record number out of range (Error 29, X‘1D’)

A request to read a record within a random access file (see the @POSN super-
visor call) provided a record number that was beyond the end of the file. Correct
the record number or try again using another copy of the file.

Seek error during read (Error 2, X‘02’)

During a read sector disk I/O request, the cylinder that should contain the sec-
tor was not found within the time allotted. (The time is set by the step rate spec-
ified in the Drive Code Table.) Either the cylinder is not formatted or it is no
longer readable, or the step rate is too low for the hardware to respond. You can
set an appropriate step rate using the SYSTEM library command. The problem
may also be caused by media or hardware failure. In this case, try the operation
again, using a different drive or diskette.

Seek error during write (Error 10, X‘0A’)

During a sector write, the cylinder that should contain the sector was not found
within the time allotted. (The time is set by the step rate specified in the Drive
Code Table.) Either the cylinder is not formatted or it is no longer readable, or
the step rate is too low for the hardware to respond. You can set an appropriate
step rate using the SYSTEM library command. The problem may also be
caused by media or hardware failure. In this case, try the operation again, using
a different drive or diskette.

368

— Unknown error code

The @ERROR supervisor call was called with an error number that is not
defined. Check for an error in your application program.

Write fault on disk drive (Error 14, X‘OE’)

An error occurred during a write operation. This probably indicates a hardware
problem. Try a different diskette or drive. If the problem continues, contact a
Radio Shack Service Center.

Writé protected disk (Error 15, X‘OF’)

You tried to write to a drive that has a write-protected diskette or is software
write-protected. Remove the write-protect tab, if the diskette has one. If it does
not, use the DEVICE command to see if the drive is set as write protected. If it
is, you can use the SYSTEM library command with the (WP = OFF) parameter
to write enable the drive. If the problem recurs, use a different drive or different
diskette.

Numerical List of Error Messages

Decimal Hex Message

X'00° No Error

X'‘01’ Parity error during header read
X'02° Seek error during read

X'‘03" Lost data during read

X'‘04’ Parity error during read

X'‘05° Data record not found during read
X'06" Attempted to read system data record
X'07° Attempted to read locked/deleted data record
X'08 Device not available

X'09' Parity error during header write
10 X'‘0A’ Seek error during write

11 X'0B’ Lost data during write

12 X'Q0C' Parity error during write

13 X'0D’ Data record not found during write
14 X'OE’ Write fault on disk drive

15 X'‘OF Write protected disk

16 X10' lllegal logical file number

17 X'11” Directory read error

18 X'12" Directory write error

19 X138 lllegal file name

20 X'14" GAT read error

21 X115 GAT write error

22 X'16" HIT read error

23 X'17" HIT write error

24 X'18" File not in directory

25 X'19' File access denied

26 X1A’ Full or write protected disk

27 X1B" Disk space full

28 X1C End of file encountered

29 X1D’ Record number out of range

30 X1E’ Directory Full—can't extend file
31 X1F Program not found

32 X'20° lllegal drive number

CoOoONOCOPWUN—-S

33 X21" No device space available
34 X'22" Load file format error
37 X'25 lllegal access attempted to protected file

38 X'26' File not open
39 X'27 Device in use
40 X‘28' Protected system device

369

41
42
43
63

X229’
X2A’
X2B’
X‘3F

File already open
LRL open fault

SVC parameter error
Extended error
Unknown error code

370

Appendix D/Keyboard Code Map

The keyboard code map shows the code that TRSDOS returns for each key, in
each of the modes: control, shift, unshift, clear and control, clear and shift, clear

and unshift.

For example, pressing (CLEAR), (SHIFT), and (D at the same time returns the code

XAt

A program executing under TRSDOS — for example, BASIC — may translate
some of these codes into other values. Consult the program’s documentation

for details.

Key Handling

The key (X'80’) is handled in different ways, depending on the settings
of three system functions. The table below shows what happens for each com-

bination of settings.

Break Type-
E?l;iﬁ: d Vector Ahead
Set Enabled

Y N Y If characters are in the type-ahead buffer,
then the buffer is emptied.*

If the type-ahead buffer is empty, then a
BREAK character (X‘80’) is placed in the
buffer*

Y N N A BREAK character (X'80’) is placed in the
buffer.

Y Y Y The type-ahead buffer is emptied of its con-
tents (if any), and control is transferred to the
address in the BREAK vector (see @BREAK
SVC)r

Y Y N Control is transferred to the address in the
BREAK vector (see @BREAK SVC).

N X X No action is taken and characters in the type-

ahead buffer are not affected.

“Because the key is checked for more frequently than other keys on the
keyboard, it is possible for to be pressed after another key on the key-

board and yet be detected first.

Y means that the function is on or enabled
N means that the function is off or disabled

X means that the state of the function has no effect
‘Break is enabled with the SYSTEM (BREAK =O0ON) command (this is the

default condition).

The break vector is set using the @BREAK SVC (normally off).
Type-ahead is enabled using the SYSTEM (TYPE = ON) command (this is the

default condition).

383

31| B2 32|B3 33|B4 34|B5 35(B6 36[B7 * ./|B8 38]B9 39[B0 3p[BA t1[AD 2D[80 80
! E # $ % & ’ () * = B
a1 1 21|Aa22 22|a3 3 23|As 4 24|as 5 25|a6 6 26|A7 7 27|A8 8 28|A9 O 20|ap @ t|AA : 2a|BD — 3D|s0 Rttt
B1 31| B2 32| B3 33| B4 34| B5 35| B6 36| B7 37| B8 38| B9 39| B@ 30| BA 3A| AD 2ngo K 8o
8B ?B| 91 11| 97 17|85 05| 92 12| 94 14| 99 19| 95 15| 89 @9 | 8F OF| 90 10|0 @] 88 @889 @9
9B 1B |=1O 51 7 Wosy E5E s|r2 B 52 F4T salro ¥ solrs U ss|eo ! a0|er O ar|ro P soleo @ eofos < 1800 ~ 1o
8B oB| D1 71| D7 77| c5 65| D2 72| D4 74| D9 79| D5 75| c9 69 | CF 6F| D@ 70| co 49| 88 98| 89 09
8A 0A| 81 01] 93 13| 84 04| 86 06| 87 07| 88 08| 8A 0A| 8B OB| 8C OC|1E 1E| 8D oD C
+ L
ENTER 1F
9A¢1AE1A41F3853E4D44E6F46E7G 47E8H48EAJ4AEBK4BECL4C7E;ZB7F 1D E
8A 0A| C1 61| D3 73| ca 64| c6 66| cC7 67| c8 68| CA 6A|CB 68| cC 6C | 5E 38| 5F oD R
9A 1A| 98 18| 83 83| 96 16 82 62| 8 @E| 8D op|1B 18|1D 1p|1c 1c
?
SHIFT FA N 5A| F8 X 58 E3C 43| F6 v 56 | E2 42| EE N 4E | ED M 4D 7B<, 3c| 7D > 3E|7c / 3F SHIFT
DA 7A| D8 78| c3 63| D6 76| C2 62| CE 6E | CD 6D| 5B 2c| 5D 2E|5C 2F
00
C AQ C
T 20 A
A
R 0 P
L A0 20 S
The keys may be positioned differently on your keyboard. However, they produce the same codes. P a1 a2 2z 83 53
91 F1 91|92 F2 92|93 F3 93
81 81 |82 82|83 83
LEGEND:
@ [}
Clear and Control Control 7 8 9
Clear and Left Shift | ® ®| Shift
Clear and Unshift * ® | Unshift
4 5 6
Codes for these keys
Note: Pressing CONTROL, SHIFT, and t Pressing SHIFT and 0 at the same a;e the.sa’k“e f)s f°(;
@ at the same time generates an time (or CAPS alone) turns the the main Keynoard,
EOF (end of file) — — X"1C’ CAPS mode on or off, 1 2 3
with NZ return flag.
tt Pressing CONTROL and : at the
Whenever pressing CLEAR, same time causes a screen print.
SHIFT, and another key at the ¢ ® ENT
same time, be sure to use the ttt Pressing SHIFT and BREAK at
left SHIFT key — not the right

SHIFT key.

the same time reselects the last
drive.

384

Appendix E/Programmable SVCs
—. (Under Version 6.2 only)

SVC numbers 124 through 127 are reserved for programmer installable SVCs.
To install an SVC the programmer must write the routine to execute when the
SVC is called.

The routine should be written as high memory module if it is to be available at
all times. If you execute a SYSGEN command when a programmable SVC is
defined, the address of the routine is saved in the SYSGEN file and restored
each time the system is configured. If the routine is a high memory module, the
routine is saved and restored as well. This makes the SVC always available.
For more information on high memory modules, see Memory Header and Sam-
ple Program F.

To install an SVC, the program must access the SVC table. The SVC table con-
tains 128 two-byte positions, a two-byte position for each usable SVC. Each po-
sition in the table contains the address of the routine to execute when the SVC
is called.

To access the SVC table, execute the @FLAGS SVC (SVC 101). IY + 26 con-
tains the MSB of the SVC table start address. The LSB of the SVC table ad-
dress is always 0 because the SVC table always begins on a page boundary.

Store the address of the routine to be executed at the SVC number times 2 byte
in the table. For example, if you are installing SVC 126, store the address of the
routine at byte 252 in the table. Addresses are stored in LSB-MSB format.

When the SVC is executed, control is transferred to the address in the table. On
entry to your SVC, Register A contains the same value as Register C. All other

— registers retain the values they had when the RST 28 SVC instruction was
executed.

To exit the SVC, execute a RET instruction. The program should save and re-
store any registers used by the SVC.

Initially, SVCs 124 through 127 display an error message when they are exe-
cuted. When installing an SVC you should save the original address at that lo-
cation in the table and restore it when you remove the SVC.

These program lines insert a new SVC into the system SVC table, save the pre-
vious value of the table, and reinsert that value before execution ends. You
could check the existing value to see if the address is above X2600'. If it is, the
SVC is already assigned and should not be used at this time.

This code inserts SVC 126, called MYSVC:

LD A, @FLAGS ;Locate start of SVC table

RST 28H :Execute @FLAGS SVC

LD H,(lY + 26) ;Get MSB of address

LD L,126*2 ;Want to use SVC 126

LD (OSVC126A),HL ;Save address of SVC entry

LD E,(HL) ;Get current SVC address

INC HL

LD D,(HL)

LD (OSvCi126V),DE ;Save the old value

DEC HL

LD DE,MYSVC ;Get address of routine for

;SVC 126

LD (HL),E ;Insert new SVC address into
P ;table

INC HL

385

LD (HL),D

. Code that uses MYSVC (SVC 126)

This code removes SVC 126:

LD HL,(OSVC126A) ;Get address of SVC entry
LD DE,(OSVC126V) ;Get original value

LD (HL),E ;Insert original SVC address
INC HL

LD (HL),D

386

Appendix F/Using SYS13/SYS

— (Under Version 6.2 only)

With TRSDOS Version 6.2, you can create an Extended Command Inter-
preter (ECI) or an Immediate Execution Program (IEP). TRSDOS can store
either an ECI or IEP in the SYS13 file. Both programs cannot be present at
the same time.

At the TRSDOS Ready prompt when you type () (ENTER), TRSDOS exe-
cutes the program stored in SYS13/SYS. Because TRSDOS recognizes the
program as a system file, TRSDOS includes the file when creating backups
and loads the program faster.

If you want to write additional commands for TRSDOS, you can write an in-
terpreter to execute these commands. Your ECI can also execute TRSDOS
commands by using the @CMNDI SVC to pass a command to the
TRSDOS interpreter.

If EFLAGS$ contains a non-zero value, TRSDOS executes the program in
SYS13/SYS. If EFLAGS$ contains a zero, TRSDOS uses its own command
interpreter.

Sample Program G is an example of an ECI. Itis important to note that your ECI
must be executable by pressing at the TRSDOS Ready prompt.

An ECI can use all of memory or you can restrict it to use the system overlay
area (X'2600’ to X'2FFF’).

To implement an IEP or ECI, use the following syntax:
COPY filespec SYS13/SYS.LSIDOS:drive (C=N)

o~ filespec can be any executable (/CMD) program file. drive specifies the desti-
nation drive. The destination drive must contain an original SYS13/SYS file.

Example
COPY SCRIPSIT/CMD:1 SYS13/SYS.LDI:0 (C=N)

TRSDOS copies SCRIPSIT/CMD from Drive 1 to SYS13/SYS in Drive 0. At the
TRSDOS Ready prompt, when you press (+) (ENTER), TRSDOS executes
SCRIPSIT.

387

388

Index

Subject Page Subject Page
@ABORT ... 230 | |@CLSo 240.1
Access @CMNDI ... 241

device, 191-192 @CMNDR 242
drive 193-203 Codes
file ... oo 186 ASCIl ... 374-376
Address decoding 15 character 373-382
Adjustment, drive motor 93 L= £ (o) S 369
Adjustments, FDC 61 graphiesicasunicns 377-378, 380
@ADTSK 231 keyboard 383-384
Alien disk controller 194 return ... 210
Alignment, disk drive 93 special character 378-379, 381-382
Allocation Compensated write data 88
dynamic 185 Compliancecheck 96
information 194, 207 Controlchain 132
methodsof 185 Controller, CRT 19
P - .cstweisarrnaEarinnzannpags 185 | | Controller, floppy disk 9
unitof 184 Converting to TRSDOS Version 6 .. 209-210
ASCllcodes 374-376 CPUboard 9,10, 11,15
Background tasks, invoking 215-216 CREATEdfilescouunn. 197
@BANK 219-221, 232-233 Crowbar 113, 124
Bank switching 218-221 & = T e 10, 11
Baud ... 15, 21 @CTL ...t 222-224, 243-244
Baud rate generator 169 interfacing to device drivers ... 224-226
@BKSP ... 234 Current limit circuit 130
BOOT/SYS .c..vssicnsnssssmssssaenss 187 Cylinder
BREAK highest numbered 194
detection 211-214, 235 numberof, 200
key handling 383 position, current 000000 194
@BREAK 235 staring 207
BUHEIING - :osusvnrassnnsnasnnns 15, 59, 69 @OATEc. cvvvsrcsnsassanssnnsians 245
Byte /O ... 222-224 @DCINIT ... 246
Carriage movement 93 @DCRES 247
CASIN* ... 29 @DOCSTAT ..vicvvsinnavanensansnannn 248
CASOUT* ...t 28 DEBUG i, 188
Cassette circuitry 21 @DEBUGcciiiiii. 249
Cat eyes adjustment 94 @DECHEX ...t 250
Characters Decoding, address 15
ASCIl 374-376 Density, double and single 183, 193, 200
COdES ...t 373-382 Device
graphics 377-378, 380 ACCESS .o vvvieiii 191-192
special 378-379, 381-382 handling 209
@CHNIO 236 NIL .. 191
@CKDRV 237 Device Control Block (DCB) 191
@CKBRKC ... 236.1 Devicedriver 189, 190, 195
@CKEOF 238 address ... 191
@CKTSK ... 239 COM 225-226
Cleaning the magnetichead 93 @CTL interfacingto 224-226
Clock generation 60, 70 keyboard 225
Clock rate, changing................... 363 printer 225
@CLOSE ...t 240 templates 222-224

389

Index

Subject Page Subject Page
Video ... 225 Error
DevsSpecovvviiiiiii 191 codes and messages 365-369
Directory dictionary 188
locationondisk 184, 194 @ERROR 259
primary and extended entries 196, @EXIT 260
198, 202 Extended Command Interpreter. 262, 387
record, locatinga 202 External disk drive 81
records (DIREC) 195-198 FDC controller 9, 10, 11, 59,
sectors, numberof 196 61, 69, 72
Directory Entry Code (DEC) 200-201, Feedback control, power supply 109
202, 206 @FEXT .. 261
@DIRRDc 251 File
DIR/SYS 187 ACCESS .ottt 186
@DIRWR 252 descriptions, TRSDOS 187-190
Diskdrive 9,10, 11, 81 modification 197
Disk, diskette 81 File Control Block (FCB) 205
controller 194 Files
double-sided 193-194, 199, 200 CREATEd 197
MBS a5 nacis:ccasonisunnnio 185-186 devicedriver 189
floppy -« 183 filter 189
formatting 199, 200 system (/SYS)... 187-188, 189-190, 201
hard 184 utility ... 189
I/Otable 195 Filter templates 222-224
minimum configuration 189-190 Filters 189, 190, 222-224
NAME ...ttt 200 exampleof 224
organization 183-184 @FLAGS 210, 262-263
single-sided 193-194, 199, 200 Floppy disk data separator 72
space, available 184 Flyback converter 121
@DIV8 253 @FNAME 264
@DIV16 254 @FSPEC 265
@DODIR 255-256 Fusing, power supply 109, 112
Drive @GET 222-224, 266
ACCESSovvvnnernnnnnnn, 193-204 Gran, granule
addresscoi i, 194 allocation information 207
floppy ..o 183, 193 definition 184, 199
hard 184, 193 pertrack 183-184, 194
SiZe ... 193 Granule Allocation Table (GAT)
Drive Code Table DCT 193-195 locationondisk 184
Drive motor adjustment 93 contentsof 198-200
Driveselect 59, 70, 88 Graphics
Driver — see Device driver characters, printing 362
DRVSEL*, 29 codes 377-378, 380
@DSP ..cicvvvsiionemisiransrennenns 257 @GTDCB ... 267
@DSPLY ... 258 @GTDCT ... 268
Dutycycle il 127 @GTMOD 269
End of File (EOF) 197 Guidelines, programming 209-226
Ending Record Number (ERN) 198, 207 Hashcode 197, 200
ENTER detection 211-214 Hash Index Table (HIT)
Environmental specs, power supply 124 locationondisk 184
Erasegaps il 85 explanationof 200-201

390

Index

Subject Page Subject Page
@HDFMT ... 270 Minimum configuration disk 189
Head amplitude 96 Modificationdate 197
Head, disk drive 93 MODOUT ... e 28
Head positioning 84 Motor adjustment, disk drive 93
@HEXDEC i 271 @MSG 286
@HEX8 ... 272 @MUL8 287
@HEX16 273 @MUL16 288
@HIGHS 274 Next Record Number (NRN) 206
Hold-Up time, power supply 124 NIL devicecciiiiiiiinn... 191
Horizontal linearity 146 NMllogic 59, 69
@ICNFG, interfacingto 214-215 @OPENco0cusvsmsnsssnnsnas 289
Obus ..o 26 Oscillatorccciiiiiiin.... 15
Immediate Execution Program 387 Overlays, system 187-188, 201
Indexpulse 84, 90 Over-Current protection 124
Index sector timing 95 Over-Voltage protection 109, 124, 131
Indexsensor 81, 84 PALcircuits, 15
@INIT .. 275 @PARAM 290-291
Initialization configuration Password
VECIOr 214-215 for TRSDOS files 190
Input line terminator 91 protection levels 196, 206
Interrupt tasks 216-218 @PAUSE 292
Interrupts 59, 69, 170 PAUSE detection 211-214
@IPL 276 @PEOF i 293
Job Control Language (JCL) 188, 210 Port address decoding 15
Jumperoptions, 5 Portbitmap 18, 28, 171
@KBDc 277 @POSN ... 294
@KEY .. 278 Power supplies 9, 10, 11,
Keyboard, 19 109, 112, 121
Keyboardcodes 383-384 Precompensation, write 60
@KEYIN ... 279 Preventive maintenance 93
KFLAGS ... 211 @PRINT 295
Kick startlatch 125 Printerstatus 21
@KITSK, interfacingto 215-216 Printing Graphics Characters 362
EKLTSKccicoirvmumsnnnsrmnnsss 280 Programming Guidelines 209-226
Library commands 210 Protection Levels 196, 206, 209
technical informationon 361-363 @PRT 296
@LOAD ...t 281 @PUT 222-224, 297
Load board values, power supply 114 Radial Alignment, Head 94
(711 1 - A 282 RAM ... 19, 20
@LOF 283 RAM Banks
LOG utility ... 362 switching 218-221
@LOGER 284 useof 232-233
Logic board, disk drive 91 @RAMDIR ... 2998
Logical Record Length (LRL) 197, 206 @RDHDR 299
@LOGOT ... 285 RDINSTATUS*covviiiieeennn.. 28
Low voltage outputs 113, 130 RDNMISTATUS*ccoivvinnn.. 28
Memory address decoding 18 @RDSEC 300
Memory banks — see RAM banks @RDSSC 301
Memory header 192, 209 @RDTRK 302
Memorymapccuunn. 18, 371 @READ 303

391

Index

Subject Page Subject Page
Read Data Pulse 86, 90 changing 361
Real Time Clock 21 @STEPI ... 319
Record Steppermotor 81
length 185-186, 197, 206 Supervisor calls (SVCs)
logical and physical 185-186 calling procedure 227
numbersl 186 lists of 228-229, 331-333, 334-335
Processingiiiiiaan. 186 program entry and
spanning 185-186 return conditions 227
Rectifier oL 113 sample programs using 336-359
@REMOV 304 UBINE sccesmecsswnnatsranpsss 227-359
@RENAM ... 305 Surge limiter 124
Resistor Termination 83 SYSfiles 187-188, 189-190, 201
Restart Vectors (RSTs) 211 System
Return Code (RC) 210 files 187-188, 189-190, 201
@REW ...:ccvsnssaassasnnrennvansnis 306 overlays 187-188, 201
RFIShield, 9 Task
Ripple Specifications 114, 124 interrupt level, adding 231
@RBMTSK 307 slots ...l 216, 217, 231
ROM .. 19 Task Control Block (TCB) 216, 217, 231
@RPTSKcciiiiiiiee e 308 Vector Table (TCBVT) 216, 217
@RREADl 309 Task processor, interfacingto 216-218
RS-232 @TIME ... 320
initializing 214 Timing, CPU 15
COMdriverfor 225-226 Track 00 Alignment 95
RS-232Board 9, 11, 169 Track 00 Switch 84, 90
@RSLCT 310 Trimeraseccoiiiiiiiinnn... 86
@RSTOR ... 311 TRSDOS
RN oo sinamnsseanranseassnesssasns: 312 converting to Version 6 209-210
@RWRIT ... 313 error messages and codes 365-369
Sample Programs 336-359 file descriptions 187-190
A 337-338 technical information on
= R 339-343 commands and utilities 361-363
£D oo i i emh ni AR F R B R E 344-350 TYPEcode 205
EF ciomaamanans sns e e ongunies 351-352 Under-Voltage Lockout 130
E .o 353 @VDCTL ..o 321-322
F oo 354-359 @VER 323
Sectors Version, operating system 199
percylinder 196, 201 Video Controller 19
pergranule 183-184, 194 Video Monitor 10, 145
@SEEK ... 314 Visibility ... i 196
@SEEKSCo 315 Voltage Controlled Oscillator 60
(GNP roocnsnnnsinnionssmannansannns 316 Voltage Regulation 124
@SLCT ... 317 @VRSEC 324
Snubber Circuit 129 Wait State 60, 69
@EOUND covcumnnscnnrnnsensnan 318 WAIT value, changing 362
Sound Optioncoa... 22 @WEOF 325
Special Character Codes . 378-379, 381-382 @WHERE 326
Spindle Drive 84 WRINTMASKREG* 29
Stack handling 210 @WRITE ... 327
Steprate 193 Write Enable 86

392

Index

Subject Page Subject Page
Write Gatecoivinn.. 88 @WRSEC ...
Write Precompensation 60, 69, 70 @WRSSC
Write Protect 84, 90, 95, 193 @WRTRK
WRNMIMASKREG* 28

393

